Чтение онлайн

на главную - закладки

Жанры

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров

РАЛЬФ ВИНС РАЛЬФ

Шрифт:

Существует ошибочное представление, что проигрышей можно полностью избежать, если провести достаточно эффективную диверсификацию. До не­которой степени верно, что проигрыши можно смягчить посредством эффек­тивной диверсификации, но их никогда нельзя полностью исключить. Не вводите себя в заблуждение. Не имеет значения, насколько хороша применяе­мая система, не имеет значения, как эффективно вы проводите диверсифика­цию, вы все равно будете сталкиваться со значительными проигрышами. При­чина этого не во взаимной корреляции ваших рыночных систем, поскольку бывают периоды, когда большинство или все рыночные системы портфеля работают против вас, когда, по вашему мнению, этого не должно происхо­дить. Попробуйте найти портфель с пятилетними историческими данными, чтобы все торговые системы работали бы при оптимальном f и при этом мак­симальный убыток был бы менее 30%! Это будет непросто. Не имеет значения, сколько при этом рыночных систем используется. Если вы хотите все сделать математически правильно, то надо быть готовым к проигрышу от 30 до 95% от баланса счета. Необходима строжайшая дисциплина, и далеко не все могут ее соблюдать.

Как только трейдер отказывается от торговли постоянным

количеством кон­трактов, он сталкивается с проблемой, каким количеством торговать. Это проис­ходит всегда независимо от того, признает трейдер данную проблему или нет. Тор­говля постоянным количеством контрактов не является решением, так как таким образом никогда нельзя добиться геометрического роста. Поэтому, нравится вам это или нет, вопрос о том, каким количеством торговать в следующей сделке, будет неизбежен для всех. Простой выбор случайного количества может привести к серьезной ошибке. Оптимальное f является единственным математически верным решением.

Современная теория портфеля

Вспомните ситуацию с оптимальным f и проигрышем рыночной системы. Чем лучше рыночная система, тем выше значение f. Однако если вы торгуете с опти­мальным f, проигрыш (исторически) никогда не может быть меньше f. Вообще го­воря, чем лучше рыночная система, тем больше будут промежуточные проигрыши (в процентах от баланса счета), если торговать при оптимальном f. Таким образом, если вы хотите достичь наибольшего геометрического роста, то должны быть гото­вы к серьезным проигрышам на своем пути.

Эффективная диверсификация, путем включения в портфель других рыноч­ных систем, является лучшим способом, которым можно смягчить этот проиг­рыш и преодолеть его, все еще оставаясь близко к пику кривой f (то есть не умень­шая f, скажем, до f/2). Когда одна рыночная система приносит убыток, другая приносит прибыль, тем самым смягчая проигрыш первой. Это также оказывает большое влияние на весь счет. Рыночная система, которая только что испытала проигрыш (и теперь возвращается к хорошей работе), будет иметь не меньше средств, чем до убытка (благодаря тому, что другая рыночная система аннулирова­ла проигрыш). Диверсификация не будет сдерживать прирост системы (наоборот, движение вверх будет быстрее, так как после проигрыша вы не начнете с меньше­го числа контрактов), при этом она смягчает понижение баланса (но только до очень ограниченной степени). Можно рассчитать оптимальный портфель, состоящий из различных рыноч­ных систем с соответствующими оптимальными f. Хотя мы не можем быть пол­ностью уверены, что оптимальный в прошлом портфель будет оптимальным и в будущем, это все же более вероятно, чем то, что прошлые оптимальные па­раметры системы будут оптимальными или приблизительно оптимальными в будущем. В то время как оптимальные параметры системы с течением време­ни меняются довольно быстро, веса отдельных систем в оптимальном портфеле меняются очень медленно (как и значения оптимальных f). Вообще, корреля­ция между рыночными системами достаточно стабильна. Эта новость будет еще более приятна для трейдера, если он уже нашел такой оптимально смешанный портфель.

Модель Марковица

Основные концепции современной теории портфеля изложены в монографии, написанной доктором Гарри Марковицем. Первоначально Марковиц предпо­ложил, что управление портфелем является проблемой структурного, а не индивидуального выбора акций, что обычно практикуется. Марковиц доказывал, что диверсификация эффективна только тогда, когда корреляция между включен­ными в портфель рынками имеет отрицательное значение. Если у нас есть пор­тфель, составленный из одного вида акций, то наилучшая диверсификация дос­тигается в том случае, если мы выберем другой вид акций, которые имеют ми­нимально возможную корреляцию с ценой первой акции. В результате этого. портфель в целом (если он состоит из этих двух видов акций с отрицательной корреляцией) будет иметь меньшую дисперсию, чем любой вид акций, взятый отдельно. Марковиц предположил, что инвесторы действуют рациональным способои и при наличии выбора предпочитают портфель с меньшим риском при равном уровне прибыльности или выбирают портфель с большей прибылью, при одина­ковом риске. Далее Марковиц утверждает, что для данного уровня риска есть оп­тимальный портфель с наивысшей доходностью, и таким же образом для данного уровня доходности есть оптимальный портфель с наименьшим риском. Порт­фель, доходность которого может быть увеличена без сопутствующего увеличе­ния риска или портфель, риск которого можно уменьшить без сопутствующего уменьшения доходности, согласно Марковицу, неэффективны.

Рисунок 1-7 показывает все имеющиеся портфели, рассматриваемые в данном примере. Если у вас портфель С, то лучше заменить его на портфель А, где при­быль такая же, но с меньшим риском, или на портфель В, где вы получите боль­шую прибыль при том же риске. Описывая эту ситуацию, Марковиц ввел понятие «эффективная граница» (efficient frontier). Это набор портфелей, которые находятся в верхней левой час­ти графика, то есть портфели, прибыль которых больше не может быть увеличе­на без увеличения риска, и риск которых не может быть уменьшен без уменьше­ния прибыли. Портфели, находящиеся на эффективной границе, называются эффективными портфелями (см. Рисунок 1-8). Портфели, которые находятся вверху справа и внизу слева, в целом недоста­точно диверсифицированы по сравнению с другими портфелями. Те же портфе­ли, которые находятся в середине эффективной границы, обычно очень хорошо диверсифицированы. Выбор портфеля инвестором зависит от степени неприятия риска инвестором — иначе говоря, от желания взять на себя риск. В модели Марковица любой портфель, который находится на эффективной границе, является хорошим выбором, но какой именно портфель выберет инвестор — это вопрос личного предпочтения (позднее мы увидим, что есть точное оптимальное расположение портфеля на эффективной границе для всех инвесторов).

Модель Марковица первоначально была представлена для портфеля

ак­ций, который инвестор будет держать достаточно долго. Поэтому основными входными данными были ожидаемые доходы по акциям (определяется как ожидаемый прирост цены акции плюс дивиденды), ожидаемые дисперсии этих доходов и корреляции доходов между различными акциями. Если бы мы

Рисунок 1-7 Современная теория портфеля

Рисунок 1-8 Эффективная граница

перенесли эту концепцию на фьючерсы, то было бы разумным (так как по фью­черсам не выплачивают дивидендов) измерять ожидаемое повышение цены, дис­персию и корреляции различных фьючерсов. Возникает вопрос: «Если мы измеряем корреляцию цен, то что произойдет при включении в портфель двух систем с отрицательной корреляцией, работаю­щих на одном и том же рынке?» Допустим, у нас есть системы А и В с отрицатель­ной корреляцией. Когда А в проигрыше, В в выигрыше, и наоборот. Разве это не идеальная диверсификация? Действительно, мы хотим измерить не корреляции цен рынков, на которых работаем, а корреляции изменений ежедневных балансов различных рыночных систем. И все-таки это является сравнением яблок и апельси­нов. Скажем, две рыночные системы, корреляции которых мы собираемся изме­рить, работают на одном и том же рынке, и одна из систем имеет оптимальное f, соответствующее 1 контракту на каждые 2000 долларов на счете, а другая система имеет оптимальное f, соответствующее 1 контракту на каждые 10 000 долларов на счете. Чтобы понять суть торговли фиксированной долей в портфеле из не­скольких систем, мы переведем изменения ежедневного баланса для данной ры­ночной системы в ежедневные HPR. HPR в этом контексте означает, сколько за­работано или проиграно в данный день на основе 1 контракта в зависимости от оптимального f для этой системы. Рассмотрим пример. Скажем, рыночная систе­ма с оптимальным f в 2000 долларов за день заработала 100 долларов. Тогда HPR для этой рыночной системы составит 1,05. Дневное HPR можно найти следую­щим образом:

где А = сумма в долларах, выигранная или проигранная за этот день;

В = оптимальное f в долларах.

Для рассматриваемых рыночных систем преобразуем дневные выигрыши и про­игрыши в дневные HPR, тогда мы получим значение, не зависящее от количества контрактов. В указанном примере, где дневное HPR составляет 1,05, вы выиграли 5%. Эти 5% не зависят от того, был у вас 1 контракт или 1000 контрактов. Теперь можно сравнивать разные портфели. Мы будем сравнивать все возможные ком­бинации портфелей, начиная с портфелей, состоящих из одной рыночной систе­мы (для каждой рассматриваемой рыночной системы), заканчивая портфелями из N рыночных систем. В качестве примера рассмотрим рыночные системы А, В и С, их комбинации будут выглядеть следующим образом:

А

В

С

АВ

АС

ВС

АВС

Но не будем останавливаться на этом. Для каждой комбинации рассчитаем веса рыночных систем в портфеле. Для этого необходимо задать минимальный про­центный вес системы (или минимальное изменение веса). В следующем приме­ре (портфель из систем А, В, С) этот минимальный вес системы равен 10% (0,10):

А 100%
В 100%
С 100%
АВ 90% 10%
80% 20% 30%
70%
60% 40%
50% 50%
40% 60%
30% 70%
20% 80%
10% 90%
АС 90% 10%
80% 20%
70% 30%
60% 40%
50% 50%
40% 60%
30% 70%
20% 80%
10% 90%
ВС 90% 10%
80% 20%
Поделиться:
Популярные книги

Идеальный мир для Лекаря 14

Сапфир Олег
14. Лекарь
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 14

Наследие Маозари 3

Панежин Евгений
3. Наследие Маозари
Фантастика:
рпг
аниме
5.00
рейтинг книги
Наследие Маозари 3

Красноармеец

Поселягин Владимир Геннадьевич
1. Красноармеец
Фантастика:
боевая фантастика
попаданцы
4.60
рейтинг книги
Красноармеец

Законник Российской Империи

Ткачев Андрей Юрьевич
1. Словом и делом
Фантастика:
городское фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Законник Российской Империи

Имперский Курьер. Том 2

Бо Вова
2. Запечатанный мир
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Имперский Курьер. Том 2

Метатель

Тарасов Ник
1. Метатель
Фантастика:
боевая фантастика
попаданцы
рпг
фэнтези
фантастика: прочее
постапокалипсис
5.00
рейтинг книги
Метатель

Я тебя не отпускал

Рам Янка
2. Черкасовы-Ольховские
Любовные романы:
современные любовные романы
6.55
рейтинг книги
Я тебя не отпускал

Вадбольский

Никитин Юрий Александрович
1. Вадбольский
Фантастика:
попаданцы
5.00
рейтинг книги
Вадбольский

Младший сын князя. Том 2

Ткачев Андрей Юрьевич
2. Аналитик
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Младший сын князя. Том 2

Вы не прошли собеседование

Олешкевич Надежда
1. Укротить миллионера
Любовные романы:
короткие любовные романы
5.00
рейтинг книги
Вы не прошли собеседование

Камень Книга двенадцатая

Минин Станислав
12. Камень
Фантастика:
боевая фантастика
городское фэнтези
аниме
фэнтези
5.00
рейтинг книги
Камень Книга двенадцатая

Граф

Ланцов Михаил Алексеевич
6. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Граф

В погоне за женой, или Как укротить попаданку

Орлова Алёна
Фантастика:
фэнтези
6.62
рейтинг книги
В погоне за женой, или Как укротить попаданку

Барон Дубов 6

Карелин Сергей Витальевич
6. Его Дубейшество
Фантастика:
юмористическое фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Барон Дубов 6