Новый ум короля: О компьютерах, мышлении и законах физики
Шрифт:
ВЕЙЛЬ= 0
в тот момент, когда приобретает смысл описание в терминах классических понятий геометрии пространства-времени. С другой стороны, для сингулярностей, расположенных внутри черных дыр, и (возможно) для сингулярности большого коллапса — т. е. для будущих сингулярностей— такого рода ограничение отсутствует, и мы полагаем, что по мере приближения к такой сингулярности тензор Вейля стремится к бесконечности:
ВЕЙЛЬ– > .
Я считаю это обстоятельство несомненным свидетельством асимметричности во времени искомой истинной теории. Итак:
искомая квантовая теория гравитации асимметрична во времени.
Хочу предупредить здесь читателя, что приведенный вывод, несмотря на его очевидность, с неизбежностью вытекающей из изложенных выше рассуждений, не является, тем не менее, общепринятым! Большинство исследователей, работающих в рассматриваемой области науки, крайне неохотно встают на эту точку зрения. Причина, по-видимому, кроется в отсутствии ясного способа, каким привычные и (насколько можно судить) хорошо нами понятые процедуры квантования могли бы породить асимметричную во времени [190]
190
Хотя процедуры квантования не всегда сохраняют симметрию классической теории (см. Трейман [1985]; Аштекар и др. [1989]), здесь требуется нарушение всех четырехсимметрии, обычно обозначаемых как Т, РТ, СТ и СРТ. Это (особенно нарушение СРТ симметрии) выходит за пределы возможностей обычных методов квантования.
Многие физики могут возразить, что гипотезы, подобные предположению о нулевом начальном значении вейлевской кривизны, — представляя собой выбор «граничного условия», а не динамические законы, — находятся за пределами наших возможностей объяснения. Они утверждают, по сути, что в данном случае мы имеем дело с «актом Творца» и нечего даже и пытаться понять, почему нам дано именно это граничное условие, а не какое-нибудь другое. Однако, как мы уже убедились выше, ограничение, накладываемое рассматриваемой гипотезой на «булавку Творца», по своей исключительности и точности не уступает той потрясающей и тончайшим образом организованной хореографии динамических законов, к пониманию которых мы пришли через уравнения Ньютона, Максвелла, Эйнштейна, Шредингера, Дирака и др. Хотя второе начало термодинамики и может показаться нечетким и статистическим по своей природе, оно тем не менее вытекает из чрезвычайно точного геометрического ограничения. Поскольку научное осмысление доказало свою ценность как способ понимания динамических уравнений, мне представляется неразумным впадать в отчаяние и терять всякую надежду на научное постижение ограничений, действовавших в случае «граничного условия», каким являлся Большой взрыв. С моей точки зрения, как одно, так и другое являются частью науки, хотя и той частью, которая нами — пока еще — недостаточно понята.
История науки продемонстрировала, насколько ценной для физики оказалась идея отделения динамических уравнений(законов Ньютона, уравнений Максвелла и т. д.) от так называемых граничных условий— то есть условий, необходимых для выделения из огромного множества решений того, что имеет физический смысл. Исторически простые формулировки были найдены именно для динамических уравнений. Движения частиц подчиняются простым законам, а вот о встречающихся во вселенной реальных конфигурацияхчастиц это, похоже, можно сказать нечасто. Иногда эти конфигурации на первый взгляд выглядят простыми — как, например, в случае планетных орбит, эллиптическая форма которых была установлена Кеплером, — но простота их в дальнейшем оказалась следствиемдинамических законов. Более глубокое понимание всегда достигалось через динамические законы, а простые конфигурации, подобные вышеописанной, как правило оказывались просто приближениями к более сложным конфигурациям вроде возмущенных (уже не совсем эллиптических) реально наблюдаемых движений планет, которые находят свое объяснение в динамических уравнениях Ньютона. Граничные условия служат для «запуска» рассматриваемой системы, после чего за дело принимаются динамические законы. Сам факт возможности отделения проблемы динамического поведения от вопроса о конфигурации реального содержимого вселенной представляет собой одно из важнейших достижений физической науки.
Я сказал, что исторически это разделение на динамические уравнения и граничные условия сыграло чрезвычайно важную роль. Сама же возможность такого разделения представляет собой свойство конкретноготипа уравнений (дифференциальных уравнений), который, как кажется, всегда возникает в физике. Но я не верю, что это разделение сохранится навечно. По-моему, когда нам удастся окончательно постичь законы или принципы, в действительностиуправляющие поведением нашей вселенной, — а не просто те изумительные приближения, к пониманию которых мы уже пришли и которые суть составные части наших ПРЕВОСХОДНЫХ современных теорий, то увидим, как различие между динамическими уравнениями и граничными условиями исчезнет, уступив место потрясающе согласованной всеобъемлющей схеме. Разумеется, утверждая это, я выражаю исключительно свое собственное мнение, с которым многие могут не согласиться. Но именно эту точку зрения я имею в виду, когда стараюсь нащупать следствия из пока неизвестной квантовой теории гравитации. (Под этим углом будут рассмотрены также некоторые наиболее спекулятивные рассуждения последней главы.)
Как же можно изучать следствия неизвестной еще теории? Это, однако, не обязательно столь безнадежно, как кажется. Главное здесь — быть последовательными! Сначала я попрошу вас допустить, что наша гипотетическая теория, далее называемая ПКТГ(«правильная квантовая теория гравитации»), должна объяснить гипотезу о вейлевской кривизне ( ГВК). Это значит, что в непосредственном ближайшем будущем начальнаясингулярность должна удовлетворять условию ВЕЙЛЬ= 0 . Это ограничение не должно противоречить законам ПКТГи поэтому обязано соблюдаться для любойначальной сингулярности, а не только той, что мы называем Большим взрывом. При этом я никоим образом не утверждаю существование в нашей реальной вселенной каких бы то ни было других начальных сингулярностей, отличных от Большого взрыва, но всего лишь говорю, что такая сингулярность, если бы она существовала, должна удовлетворять ограничению, накладываемому ГВК. Начальная сингулярность — это сингулярность, из которой, в принципе, могут возникать частицы. Такие сингулярности ведут себя противоположно черным дырам — конечнымсингулярностям, в которые частицы могут падать.
Одним
Примером еще одного вида начальных сингулярностей является точка взрыва черной дыры, окончательно исчезающей, после, скажем, 10 64 лет хокинговского испарения (см. Глава 7. «Насколько особым был Большой взрыв?», а также Глава 8. «Ящик Хокинга: связь с гипотезой о вейлевской кривизне?»)! Точная природа этого (весьма правдоподобно аргументированного) явления является предметом многочисленных теоретических гипотез. Я думаю, что никакого противоречия с ГВКздесь нет. Такого рода (локализированный) взрыв может быть практически мгновенным и симметричным, и я не вижу здесь никакого конфликта с гипотезой ВЕЙЛЬ= 0 . Во всяком случае, если предположить, что черных мини-дыр не существует (Глава 7. «Насколько особым был Большой взрыв?»), то первый такой взрыв вряд ли произойдет раньше, чем вселенная просуществует в 10 54 раз больше современного возраста Т . Чтобы получить представление о величине 10 54 х Т , мысленно уменьшим Т до самого короткого измеримого промежутка времени, равного времени распада самой короткоживущей из нестабильных частиц. В полученной таким образом шкале времени современный возраст вселенной окажется меньше 10 54 х Т в миллион миллионов раз!
Кто-нибудь может посмотреть на все это с другой точки зрения. Мне могут возразить [191] , что ПКТГне обязана быть асимметричной во времени, а должна лишь допускать на самом деле два типа сингулярностей, для одних из которых должно выполняться равенство ВЕЙЛЬ= 0 , а для вторых возможно ВЕЙЛЬ– > . В нашей вселенной оказалась сингулярность первого типа, и наше восприятие направления течения времени (в силу вытекающего отсюда второго начала термодинамики) помещает эту сингулярность туда, где находится наше так называемое «прошлое», а не «будущее». По-моему, однако, соображение это в таком виде не выдерживает критики. Оно не объясняет отсутствие другихначальных сингулярностей типа ВЕЙЛЬ– > (а также отсутствие других начальных сингулярностей типа ВЕЙЛЬ= 0 ). Почему, если согласиться с этой точкой зрения, вселенная не усеяна белыми дырами? Поскольку она, как мы предполагаем, кишит черными дырами, отсутствие белых дыр требует объяснения [192] .
191
Насколько я смог понять, именно такая точка зрения неявно содержится в выдвигаемых сейчас Хокингом предложениях по квантово-гравитационному объяснению рассматриваемых проблем (Хокинг [1987, 1988]). Гипотеза Хартли и Хокинга [1983] о квантово-гравитационной природе начального состояния, возможно, относится к тем гипотезам, что могут подвести теоретическую базу под начальное условия типа ВЕЙЛЬ= 0 , но эти идеи пока что лишены чрезвычайно важного (по моему мнению) компонента, каким является асимметрия во времени.
192
Некоторые могут на это возразить (совершенно справедливо), что наблюдения не подтверждают однозначным образом мое утверждение о существовании во вселенной черных дыр и отсутствии белых. Но мой довод, в основном, теоретического характера. Черные дыры не противоречат второму началу термодинамики, а белые дыры противоречат! (Разумеется, можно просто постулировать второе начало термодинамики и отсутствие белых дыр, но мы хотим достичь более глубокого понимания сути вещей, происхождения второго начала термодинамики.)
Другое соображение, иногда привлекаемое в связи с рассматриваемой проблемой, — это так называемый антропный принцип (см. Барроу, Типлер [1986]). Согласно этому соображению, конкретная вселенная, обитателями которой мы сейчас являемся, выбрана из всех возможныхвселенных потому, что в ней должны существовать мы (или, по крайней мере какие-нибудь чувствующие существа), чтобы ее было кому наблюдать! (Я вернусь к обсуждению антропного принципа в главе 10.) На этом основании утверждается, что разумные существа могут населять только вселенные с Большим взрывом очень определенного типа — и поэтому следствием этого принципа должно быть что-то вроде ГВК. Однако, это соображение не позволяет и близко подойти к числу,