Чтение онлайн

на главную - закладки

Жанры

Новый ум короля: О компьютерах, мышлении и законах физики
Шрифт:

полученному в главе 7 («Насколько особым был Большой взрыв?»), которое характеризует степень «специфичности» Большого взрыва. Путем очень грубого расчета можно установить, что порождение солнечной системы со всем ее населением в результате случайных столкновений частиц обойдется гораздо «дешевле», а именно: соответствующая степень «невероятности» (измеряемая в терминах фазовых объемов) соответствует «всего лишь» одной доле из много менее чем.

Это все, что может дать антропный принцип, и нам еще чудовищно далеко до требуемого числа. Более того, соображения, основанные на антропном принципе, не в состоянии объяснить, как и обсуждавшаяся перед этим концепция, отсутствия белых дыр.

Временная асимметрия в редукции вектора состояния

По-видимому, нам действительно ничего не остается, как заключить, что ПКТГдолжна быть асимметричной во времени теорией, одним из следствий которой является ГВК(или что-то вроде этого). Как же асимметричная во времени теория может получиться из симметричных во времени ингредиентов: квантовой теории и общей теории относительности? Есть, оказывается, несколько технических способов достижения этой цели, и ни один из них не исследовался достаточно глубоко (см. Аштекар и др. [1989]). Но я собираюсь подойти

к проблеме с другой стороны. Как я уже отмечал, квантовая теория «симметрична во времени», но это в действительности относится только к части Uтеории (уравнению Шредингера и т. д.). Обсуждая временную симметрию физических законов в начале главы 7, я умышленно избегал упоминания части R(коллапс волновой функции). Согласно преобладающей точке зрения Rтоже должна быть, по-видимому, симметричной во времени. Своим существованием эта точка зрения может, в частности, быть обязана нежеланию признавать в Rреальный независимый от U«процесс», вследствие чего из временной симметрии Uдолжна бы также вытекать временная симметрия R. Я хотел бы возразить, что это не так : R асимметричнаво времени — по крайней мере, если считать Rпросто процедурой, принятой физиками для расчета квантово-механических вероятностей.

Я сначала напомню вам используемую в квантовой механике так называемую процедуру редукции вектора состояния ( R) (см. рис. 6.23). Рис. 8.1 иллюстрирует (условно) характер предполагаемой эволюции вектора состояния | ) в квантовой механике.

Рис. 8.1.Временная эволюция вектора состояния: гладкая унитарная эволюция U (в соответствии с уравнением Шредингера), перемежаемая с разрывной редукцией R вектора состояния

Как видим, этот характер довольно своеобразный: считается, что большую часть времени эволюция происходит в соответствии с унитарнойэволюционной процедурой U(уравнение Шредингера), но в некоторые моменты времени, когда предполагается, что происходит «наблюдение» (или «измерение»), применяется Rпроцедураи вектор состояния скачком переходит в другой вектор состояния, | X ), где | X ) представляет собой одну из двух или нескольких ортогональных альтернативных возможностей | X ), | ), | )…, определяемых природой конкретного производимого наблюдения О. Тогда вероятность р скачкообразного перехода от | ) к | X ) определяется уменьшением квадрата длины | ) 2 вектора | ) при проекции | ) (в гильбертовом пространстве) на направление вектора | X ) (Математически это равно величине уменьшения | X ) 2 при проекции вектора | X ) на направление | ).) В таком виде эта процедура оказывается асимметричной во времени, поскольку сразу же послевыполнения наблюдения Овектор состояния должен принадлежать к заданному множеству| X ), | ), | )…, возможных значений, определяемых О, в то время как непосредственно переднаблюдением Овектор состояния должен был иметь значение | ), которое не обязано быть равным ни одному из элементов упомянутого множества. Однако, это всего лишь кажущаяся асимметричность и она может быть устранена, если посмотреть на эволюцию вектора состояния с другой точки зрения. Рассмотрим квантово-механическое решение, обращенное во времени. Это экстравагантное описание проиллюстрировано на рис. 8.2.

Рис. 8.2.Более экстравагантное изображение эволюции вектора состояния, описанное вспять по времени. Расчетная вероятность, связывающая наблюдение в точке О с наблюдением в точке О', такая же, как и в случае, изображенном на рис. 8.1, но к чему относится это вычисленное значение?

Мы предполагаем, что вектор состояния равен | X ) непосредственно перед О, а не сразу после этого наблюдения, и применим процедуру унитарной эволюции вспять по времени вплоть до момента предыдущего наблюдения О '. Предположим, что в результате обратной эволюции мы получим состояние, описываемое вектором | X') (сразу же после наблюдения О '). В нормальном описании эволюции вперед во времени, изображенном на рис. 8.1, сразу же вслед за О 'мы имели другое состояние | ') (результат наблюдения О ', при котором эволюция вперед во времени вектора | ') переводит его в | ) в момент наблюдения О). Теперь в нашем обращенном во времени описании у вектора | ') тоже есть своя роль: он представляет состояние системы непосредственно перед О '. Вектор состояния | ') соответствует состоянию, фактически наблюдавшемуся в точке О ', так что с «обращенной» точки зрения мы рассматриваем | ') как результат наблюдения О 'в обращенном вспять времени. Расчетное значение квантовомеханической вероятности р', связывающее результаты наблюдений в точках Ои О ', теперь определяется уменьшением величины | X'| 2при проекции | X') в направлении | ') (что равно уменьшению | '| 2при проекции | ') в направлении | ')). То, что мы получим то же самое значение, что и раньше, является фундаментальным свойством оператора U [193] .

193

Это станет несколько более понятным, если использовать операцию скалярного произведения ( | X ) упомянутую в примечании 151 к главе 6. В случае

описания вперед по времени вероятность р рассчитывается как:

Тождественность двух выражений следует из ( '| X') = ( | X ), а это, в сущности, и подразумевается под «унитарной эволюцией».

Таким образом, может создаться видимостьустановления симметричности во времени квантовой теориидаже в случае, когда помимо обычной процедуры унитарной эволюции Uучитывается также и разрывный процесс, описываемый процедурой редукции Rвектора состояния. Это, однако, неверно . Квантовая вероятность р описывает — независимо от того, как она рассчитывается — вероятность получить результат (а именно, | X )) в точке Опри условии определенного результата (а именно, | ')) в точке О '. Эта вероятность не обязательно равна вероятности получить данный результат в точке О ' при условииданного результата в точке О, а ведь именно последнюю вероятность [194] и должна определить обращенная во времени квантовая механика. Просто удивительно, до чего много физиков молчаливо полагают эти две вероятности равными друг другу. (Я сам этим грешил — см. Пенроуз [1979б], с. 584.) Однако наиболее вероятно, что эти две вероятности совершенно различны и только первая из них правильно определяется в рамках квантовой механики!

194

Возможно, некоторым читателям сложно понять, что имеется в виду под вероятностью прошлого события при условии, что имело место определенное событие в будущем. Однако это совсем не сложно. Вообразите себе всю историю нашей вселенной, отображенной в пространстве-времени. Чтобы найти вероятность события р при условии, что произошло событие q , мысленно рассмотрим все случаи, когда имело место событие q , и сосчитаем, в какой доле этих случаев имело место также и событие р . Это и есть требуемая вероятность. При этом не важно, относится ли q к событиям, которые обычно происходят после события р , или до него.

Давайте поясним эту ситуацию на простом конкретном примере. Предположим, что у нас есть лампа L и фотоэлемент (то есть, детектор фотонов) Р . Между L и P разместим полупосеребренное зеркало М, наклонив его под углом равным, скажем, 45 ° к линии, соединяющей точки L и Р (рис. 8.3).

Рис. 8.3.Необратимость во времени Rпроцедурыв простом квантовом эксперименте. Вероятность регистрации фотона фотоэлементом при условииизлучения фотона источником равна в точности одной второй, но вероятность излучения фотона источником при условии, что фотоэлемент зарегистрировал фотон, заведомо не равна одной второй

Предположим, что лампа время от времени случайным образом испускает фотоны, и что конструкция ее такова (в ней используются параболические зеркала), что фотоны всегда оказываются очень точно нацеленными на Р . При каждом попадании фотона на фотоэлемент последний регистрирует это событие, причем мы предполагаем, что устройство срабатывает со 100 %-ной надежностью. Предположим также, что каждый факт излучения фотона регистрируется в точке L и тоже со 100 %-ной надежностью. (Ни одно из этих идеализированных требований не противоречит принципам квантовой механики, хотя практическое достижение такой эффективности может представлять определенные трудности.)

Свойства полупосеребренного зеркала М таковы, что оно отражает в точности половину попадающих на него фотонов и пропускает остальную половину. Правильнее рассматривать это с точки зрения квантовой механики. Волновая функция фотона падает на зеркало и расщепляется на две волновых функции. Амплитуда отраженной части волны равна 1 / 2 , а амплитуда прошедшей части волны тоже равна 1 / 2 . Обе части волновой функции должны считаться «сосуществующими» (при нормальном описании вперед по времени) до того момента, когда предполагается имевшим место «наблюдение». В этой точке ситуация с одновременно сосуществующими альтернативами разрешается (в пользу одной или другой) фактически реализованнойальтернативы с вероятностями, равными квадратам (модулей) соответствующих амплитуд, а именно ( 1 / 2 ) 2 = 1 / 2 в обоих случаях. После выполнения наблюдения вероятности отражения или прохождения фотона действительно оказываются равными одной второй.

Посмотрим теперь, как все это соотносится с нашим экспериментом. Предположим, что зарегистрирован факт излучения фотона лампой L . Волновая функция фотона расщепляется на зеркале и приходит в точку Р с амплитудой, равной 1 / 2 , поэтому фотоэлемент либо регистрирует фотон, либо не регистрирует его — и то и другое с вероятностью, равной одной второй. Другая часть волновой функции фотона попадает в точку А на лабораторной стене(см. рис. 8.3) и тоже с амплитудой 1 / 2 . Если фотоэлемент Р не регистрирует событие, то фотон следует считать попавшим в лабораторную стену в точке А . Если бы в точке А находился другой фотоэлемент, то он регистрировал бы фотон всякий раз, когда фотоэлемент Р не регистрирует фотон, и не регистрировал бы фотон всякий раз, когда фотоэлемент регистрирует фотон. В этом смысле нет никакой необходимости устанавливать фотоэлемент в точке А . Мы можем определить, что сделал бы фотоэлемент в точке А , будь он там установлен, просто глядя на фотоэлементы в точках L и Р .

Поделиться:
Популярные книги

Вонгозеро

Вагнер Яна
1. Вонгозеро
Детективы:
триллеры
9.19
рейтинг книги
Вонгозеро

Кротовский, может, хватит?

Парсиев Дмитрий
3. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
аниме
7.50
рейтинг книги
Кротовский, может, хватит?

Сборник коротких эротических рассказов

Коллектив авторов
Любовные романы:
эро литература
love action
7.25
рейтинг книги
Сборник коротких эротических рассказов

Архонт

Прокофьев Роман Юрьевич
5. Стеллар
Фантастика:
боевая фантастика
рпг
7.80
рейтинг книги
Архонт

Медиум

Злобин Михаил
1. О чем молчат могилы
Фантастика:
фэнтези
7.90
рейтинг книги
Медиум

Титан империи 8

Артемов Александр Александрович
8. Титан Империи
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Титан империи 8

Ведьма Вильхельма

Шёпот Светлана
Любовные романы:
любовно-фантастические романы
8.67
рейтинг книги
Ведьма Вильхельма

Волхв

Земляной Андрей Борисович
3. Волшебник
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Волхв

Я еще не барон

Дрейк Сириус
1. Дорогой барон!
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Я еще не барон

Темный Патриарх Светлого Рода

Лисицин Евгений
1. Темный Патриарх Светлого Рода
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода

Пистоль и шпага

Дроздов Анатолий Федорович
2. Штуцер и тесак
Фантастика:
альтернативная история
8.28
рейтинг книги
Пистоль и шпага

Корпулентные достоинства, или Знатный переполох. Дилогия

Цвик Катерина Александровна
Фантастика:
юмористическая фантастика
7.53
рейтинг книги
Корпулентные достоинства, или Знатный переполох. Дилогия

Ученик. Книга 4

Первухин Андрей Евгеньевич
4. Ученик
Фантастика:
фэнтези
5.67
рейтинг книги
Ученик. Книга 4

Часовое имя

Щерба Наталья Васильевна
4. Часодеи
Детские:
детская фантастика
9.56
рейтинг книги
Часовое имя