Чтение онлайн

на главную - закладки

Жанры

Новый ум короля: О компьютерах, мышлении и законах физики
Шрифт:

m Pl = 10 – 5г.

Она может показаться гораздо большей, чем хотелось бы, поскольку в простых наблюдениях мы видим, как гораздо менее массивные объекты, например, пылинки, ведут себя классическим образом. (Величина m Pl немного меньше массы блохи.) Однако, я не думаю, что одногравитонный критерий применим столь грубым образом. Я постараюсь высказываться по возможности яснее, но на момент написания этих строк вопрос о конкретном способе применения рассматриваемого критерия остается в значительной степени открытым.

Давайте рассмотрим сначала очень непосредственный способ наблюдения частицы — при помощи камеры Вильсона. В этом случае мы имеем камеру, заполненную паром, находящимся на грани конденсации в капельки воды. При попадании в такую камеру быстро движущейся частицы — например, частицы, возникшей в результате распада расположенного вне камеры радиоактивного атома, ее прохождение сквозь камеру вызывает ионизацию расположенных вблизи траектории пролета атомов (т. е.

атомы становятся заряженными в результате отрыва от них электронов). Эти ионизированные атомы служат центрами конденсации капелек из водяного пара. Таким образом возникает трек, состоящий из капелек, которые могут непосредственно наблюдаться экспериментатором (рис. 8.7).

Рис. 8.7.Заряженная частица влетает в камеру Вильсона и вызывает конденсацию капелек на своем пути

Ну а как же все это описывается в квантовой механике? В момент распада радиоактивного атома он испускает частицу. Но у этой частицы существует множество различных направлений движения: каждое направление движения описывается своей амплитудой, причем все они сосуществуют одновременно в виде линейной квантовой суперпозиции. Совокупность всех этих наложенных друг на друга альтернатив образует исходящую из распавшегося атома сферическую волну — волновую функцию испущенной атомом частицы. При попадании любого из возможных треков частицы в камеру, он тут же оказывается ассоциированным с цепочкой ионизованных атомов, каждый из которых служит центром конденсации пара. Все эти различные возможные цепочки ионизованных атомов должны сосуществовать в виде линейной квантовой суперпозиции, так что мы имеем теперь линейную суперпозицию большого числа различныхцепочек конденсирующихся капелек. На некотором этапе эта комплексная квантовая линейная суперпозиция превращается в действительную совокупность фактическихальтернатив с вероятностными весами, равными, согласно Rпроцедуре, квадратам модулей амплитуд вероятностей. В реальном физическом мире реализуется только одна из этих альтернатив, и именно она наблюдается экспериментатором. В соответствии с излагаемой здесь точкой зрения эта стадия наступает, когда разность между гравитационными полями различных альтернативных вариантов достигает одногравитонного уровня.

Когда это происходит? Согласно очень грубым расчетам [196] , если бы имелась только одна однородная шарообразная капля, то одногравитонный уровень достигался бы, когда ее масса вырастет до одной сотой от величины m Pl , что составляет одну десятимиллионную грамма. В этом расчете много неопределенностей (включая трудности принципиального характера), да и величина полученной массы несколько великовата, однако результат не совсем уж бессмысленный. Остается надеяться на появление в будущем более точных расчетов и возможность рассмотрения всей цепочки, а не просто одной из составляющих ее капель. К тому же учет неоднородности капель — того факта, что они состоят из большого числа мельчайших атомов, может существенно изменить результат, да к тому же сам «одногравитонный критерий» нуждается в существенном математическом уточнении.

196

Мои собственные первые грубые расчеты этой величины были очень существенно улучшены Абхеем Аштекаром, и здесь я привожу значение, определенное Аштекаром (см. Пенроуз [1987а]). Аштекар, однако, специально отметил, что многие из предположений довольно произвольны, и поэтому следует относиться к полученному значению массы весьма осторожно.

В описанной выше ситуации рассматривалось возможное реальное наблюдение квантового процесса (распада радиоактивного атома), при котором квантовые эффекты оказываются усиленными настолько, что различные квантово-механические альтернативы приводят к различным и непосредственно наблюдаемым макроскопическим альтернативам. Я считаю, что Rпроцедурадействительно может иметь место объективным образом даже в отсутствие столь ярко выраженногоусиления. Предположим, что наша частица попала не в камеру Вильсона, а просто в большой ящик, заполненный газом (или жидкостью) с плотностью, обеспечивающей практически гарантированное столкновение частицы или иное ее воздействие на большое число атомов газа. Рассмотрим всего два варианта возможного поведения частицы, как составные части начальной линейной суперпозиции: частица может просто не попасть в ящик совсем или же она попадет в него по определенной траектории и окажется отраженной каким-либо атомом газа. Во втором случае соответствующий атом газа отскочит, двигаясь с очень большой скоростью так, как он никогда не повел бы себя, не столкнись он с частицей, затем столкнется с еще одним атомом и, в свою очередь, отрикошетит от него. После этого движение двух атомов будет отличаться от их движения в отсутствие столкновения с частицей, и мы будем иметь уже целый каскад движений атомов в газе, невозможный в отсутствие первоначального попадания частицы в ящик (рис. 8.8).

Рис. 8.8.Гравитационные поля частиц (условное

изображение). При попадании частицы в ящик с газом через некоторое время практически все атомы газа оказываются охваченными порожденным частицей возмущением. Линейная квантовая суперпозиция частицы, попавшей в ящик, и частицы, не попавшей в ящик, подразумевает линейную суперпозицию двух различных пространственно-временных геометрий, описывающих гравитационные поля двух различных распределений частиц газа. В

какой момент различиемежду этими геометриями достигает одногравитонного уровня?

Вскоре после этого порожденное частицей возмущение охватит практически все атомы газа.

Подумаем теперь, как эту ситуацию можно описать на языке квантовой механики. Вначале мы имеем лишь исходную частицу, и ее различные положения составляют комплексную линейную суперпозицию — волновую функцию частицы. Однако через какое-то время квантово-механическое описание должно уже охватывать все атомы газа. Рассмотрим комплексную суперпозицию двух возможных траекторий частицы, при движении по одной из которых частица попадает в ящик, а по другой — нет. Стандартная квантовая механика требует распространения этой суперпозиции на все атомы газа: мы должны рассмотреть суперпозицию двух состояний, таких, что положение атомов газа в одном состоянии оказываются смещенными относительно их положений в другом состоянии. Теперь рассмотрим разностьгравитационных полей всех отдельных атомов. Хотя распределение газа (и гравитационное поле) в целомпрактически одинаково для обоих состояний, чью суперпозицию мы должны рассмотреть, если мы вычтемодно поле из другого, то получим (сильно флуктуирующее) разностноеполе, которое вполне может оказаться «значительным» в подразумеваемом здесь смысле — а именно это разностное поле вполне может превысить одногравитонный уровень. По достижении этого уровня немедленно же происходит редукция вектора состояния: в реальномсостоянии частица либопопала в ящик, либонет. Комплексная линейная суперпозиция сводится к статистически взвешенным альтернативам с осуществлением только однойиз них.

В предыдущем примере я рассматривал камеру Вильсона в качестве способа квантово-механического наблюдения. Я считаю, что и другие виды таких наблюдений (фотопластинки, искровые камеры и т. д.) можно анализировать в рамках одногравитонного критерия, используя подход, примененный в описанном выше случае ящика с газом. Многое еще предстоит сделать, чтобы разобраться в подробностях применения этой процедуры.

Изложенные здесь соображения представляют собой всего лишь зачаток новой теории, которая, как мне кажется, является столь необходимой [197] . Для того, чтобы быть полностью удовлетворительной, любая схема должна, по-моему, включать в себя радикально обновленные представления о природе пространственно-временной геометрии, быть может, с применением нелокального описания [198] . Один из самых неоспоримых доводов в пользу этого следует из экспериментов ЭПРтипа(см. гл.6 «„Парадокс“ Эйнштейна, Подольского и Розена» и гл.6 «Эксперименты с фотонами: проблема для специальной теории относительности?»), в которых «наблюдение» (в данном случае — срабатывание фотоэлемента) в одном конце комнаты может вызвать мгновенную редукцию вектора-состояния в другом конце комнаты. Построение полностью объективной теории редукции вектора-состояния, не противоречащей духу теории относительности, представляет собой очень трудную и глубокую задачу, поскольку понятие «одновременности», будучи зависимым от движения некоторого наблюдателя, является чуждым теории относительности. Я убежден, что наше современное представление о физической реальности — особенно в том, что касается природы времени— нуждается в коренном пересмотре, пожалуй, даже в более радикальном, чем тот, который был вызван к жизни современной теорией относительности и квантовой механикой.

197

Время от времени в литературе появляются и другие попытки построения объективной теории редукции векторов состояний. Среди наиболее существенных следует отметить работы Каройхази [1974], Каройхази, Френкеля и Лукача [1986], Комара [1969], Перла [1985, 1989], Гирарди, Римини и Вебера [1986].

198

На протяжении нескольких лет я тоже пытался разрабатывать нелокальную теорию пространства-времени, побуждаемый к этому главным образом стимулами иного рода, исходящими из так называемой «теории твисторов» (см. Пенроуз, Риндлер [1986], Хаггетт, Тод [1985], Уорд, Уэллс [1990]). Однако этой теории в лучшем случае недостает ряда существенных ингредиентов, и обсуждение ее здесь представляется неуместным.

Вернемся к исходной проблеме. Какое все это имеет отношение к физическим законам, которые управляют действиями нашего мозга? Как это связано с нашими мыслями и чувствами? Для того, чтобы попытаться хоть как-то ответить на эти вопросы, придется сначала немного разобраться в устройстве нашего мозга. Потом я вернусь к проблеме, которую считаю фундаментальной: какого рода новые физические действияпроисходят, когда мы сознательно мыслим или воспринимаем что-либо?

Глава 9

Реальный мозг и модели мозга

Как же устроен мозг?

У нас в голове находится великолепное устройство, которое управляет нашими действиями и каким-то образом дает нам представление об окружающем мире. Правда, как однажды отметил Алан Тьюринг [199] , внешне оно больше всего напоминает миску холодной овсянки! Трудно представить, как столь заурядного вида объект умудряется совершать чудеса, на которые, как мы знаем, он способен. Однако при ближайшем рассмотрении оказывается, что он имеет гораздо более сложное строение и замысловатую организацию (рис. 9.1).

199

Из радиовещания ВВС (см. Ходжис [1983], с. 419).

Поделиться:
Популярные книги

Инвестиго, из медика в маги 2

Рэд Илья
2. Инвестиго
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Инвестиго, из медика в маги 2

Конструктор

Семин Никита
1. Переломный век
Фантастика:
попаданцы
альтернативная история
4.50
рейтинг книги
Конструктор

Блуждающие огни 4

Панченко Андрей Алексеевич
4. Блуждающие огни
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Блуждающие огни 4

Ох уж этот Мин Джин Хо 1

Кронос Александр
1. Мин Джин Хо
Фантастика:
попаданцы
5.00
рейтинг книги
Ох уж этот Мин Джин Хо 1

Черный Маг Императора 11

Герда Александр
11. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Черный Маг Императора 11

Кодекс Крови. Книга ХIV

Борзых М.
14. РОС: Кодекс Крови
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Кодекс Крови. Книга ХIV

Девочка для Генерала. Книга первая

Кистяева Марина
1. Любовь сильных мира сего
Любовные романы:
остросюжетные любовные романы
эро литература
4.67
рейтинг книги
Девочка для Генерала. Книга первая

Ты не мой Boy 2

Рам Янка
6. Самбисты
Любовные романы:
современные любовные романы
короткие любовные романы
5.00
рейтинг книги
Ты не мой Boy 2

Брачный сезон. Сирота

Свободина Виктория
Любовные романы:
любовно-фантастические романы
7.89
рейтинг книги
Брачный сезон. Сирота

Вор (Журналист-2)

Константинов Андрей Дмитриевич
4. Бандитский Петербург
Детективы:
боевики
8.06
рейтинг книги
Вор (Журналист-2)

Наследник павшего дома. Том IV

Вайс Александр
4. Расколотый мир
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Наследник павшего дома. Том IV

Адвокат Империи 2

Карелин Сергей Витальевич
2. Адвокат империи
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Адвокат Империи 2

Законы Рода. Том 6

Flow Ascold
6. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 6

Барон Дубов 4

Карелин Сергей Витальевич
4. Его Дубейшество
Фантастика:
юмористическое фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Барон Дубов 4