Чтение онлайн

на главную - закладки

Жанры

Новый ум короля: О компьютерах, мышлении и законах физики
Шрифт:

Рис. 8.6.В области Bдолжно происходить слияние линий тока из-за потери информации на сингулярностях черных дыр. Компенсируется ли слияние порождением новых линий тока в результате Rпроцедуры(главным образом в области A)?

Два состояния до этого различные могут превратиться в одно, как только различающая их информация окажется уничтоженной. При слиянии линий тока в фазовом пространстве Рмы фактически имеем дело с нарушениемтеоремы Лиувилля. Наша жидкость больше не является несжимаемой, а непрерывно уничтожаетсяв области B!

Похоже, что теперь мы оказались в действительно трудном положении. Если «жидкость» постоянно уничтожается в области B, то число линий тока из Ав Bдолжно превышатьчисло линий тока из Bв A, откуда следует, что породить новую черную дыру легче, чем уничтожить

уже имеющуюся! Все это действительно имело бы смысл, если бы не то обстоятельство, что теперь количество «жидкости», покидающее область A, превышает количество «жидкости», которое возвращается в эту область. Черных дыр в области Aнет, а существование белых дыр исключается ГВК— и поэтому теорема Лиувилля должна вне всякого сомнения абсолютно точно выполняться в области A! Однако теперь, похоже, нам нужно каким-то образом «порождать жидкость» в области Aдля восполнения ее потери в области B. Какой механизм может обеспечить увеличение числа линий тока? По-видимому, нам потребуется, чтобы в некоторых случаях одно и то же состояние могло приводить к более чем одному результату (т. е. допустить возможность бифуркации линий тока). Такого рода неопределенность эволюции физической системы в будущем «попахивает» квантовой теорией — ее Rчастью. Возможно ли, чтобы Rбыла в некотором смысле «оборотной стороной монеты» к ГВК? В то время, как ГВКобеспечивает слияние линий тока в области B, квантово-механическая Rпроцедураприводит к бифуркациям линий тока. Я действительно утверждаю, что именно объективныйквантово-механический процесс Rредукции вектора состояния приводит к бифуркациям линий тока и таким образом в точности компенсирует их слияние, вызываемое ГВК(см. рис. 8.6)!

Для того, чтобы такое расщепление произошло, Rпроцедурадолжна быть, как мы уже видели, асимметричной во времени: вспомним описанный выше эксперимент с лампой, фотоэлементом и полупосеребренным зеркалом. В случае излучения лампой фотона возможны два (одинаково вероятных) результата этого процесса: либо фотон попадает на фотоэлемент и последний регистрирует его, либо фотон попадает на стену в точке А и фотоэлемент не срабатывает. В фазовом пространстве этого эксперимента мы имеем линию тока, представляющую излучение фотона, и эта линия тока расщепляется на две: одна часть представляет ситуацию, когда фотоэлемент срабатывает, а другая — когда он не срабатывает. Здесь мы, по-видимому, имеем дело с самой настоящей бифуркацией: одно допустимое состояние на входе и два возможных состояния на выходе. Второе входное состояние, которое следовало бы рассмотреть, — это испускание фотона из точки В на лабораторной стене, и в этом случае мы имели бы два состояния на входе и два на выходе. Однако только что упомянутое альтернативное состояние на входе исключается по причине его противоречия со вторым началом термодинамики — т. е. исходя из изложенной здесь концепции, и, в конечном итоге, по причине противоречия с ГВКпри отслеживании эволюции системы назад в прошлое.

Я должен еще раз отметить, что излагаемая мною здесь точка зрения на самом деле не является «традиционной» — хотя мне и не совсем понятно, как «традиционные» физики предлагают решать все поставленные здесь проблемы. (Я подозреваю, что немногие из них вообще серьезно над ними задумывались!) Разумеется, я слышал разные точки зрения. Например, время от времени некоторые физики выдвигали предположение о том, что хокинговское излучение никогда не приводит к полномуисчезновению черной дыры, и что от нее всегда остается своего рода «ядрышко». (И, следовательно, согласно этой точке зрения стрелок из Bв Aнет!) На самом деле это почти никак не скажется на мои рассуждениях (и фактически даже усилит их). Можно, однако, избежать моих выводов, если постулировать, что общий объем фазового пространства Рна самом деле бесконечен, но это противоречило бы некоторым весьма фундаментальным представлениям об энтропии черных дыр и природе фазового пространства замкнутых (квантовых) систем, а другие технические приемы, позволяющие избежать моих выводов, о которых мне доводилось слышать, представляются еще менее удовлетворительными. Гораздо более серьезное возражение состоит в том, что построение ящика Хокинга требует слишком сильной идеализации, и что, предполагая возможность его создания, мы вынуждены преступать некоторые барьеры принципиального характера. Хотя я сам не до конца в этом уверен, но все же склоняюсь к тому, чтобы считать некоторую необходимую идеализацию вполне допустимой!

Наконец, есть один серьезный аспект, о котором я умолчал. Я начал обсуждение, предположив, что мы имеем дело с классическимфазовым пространством — а теорема Лиувилля относится к классической физике. Но затем пришлось рассмотреть квантово-механический феномен хокинговского излучения. (Кроме того, квантовая теория нужна для обеспечения конечной размерности и конечного объема Р.) Как мы видели в главе 6, квантовым аналогом фазового пространства является гильбертово пространство , и, поэтому, следовало бы, наверно, проводить все наши рассуждения в терминах гильбертова, а не фазового пространства. Для гильбертова пространства существует аналог теоремы Лиувилля, который следует из так называемого « унитарного» характера временной эволюции U. Не исключено, что все мои рассуждения можно сформулировать полностью в терминах гильбертового, а не классического фазового пространства, но мне трудно представить себе, каким образом в этом случае можно рассматривать классические явления, связанные с пространственно-временной геометрией черных дыр. Я считаю, что для правильной теории непригодно ни классическое фазовое пространство, ни гильбертово пространство, а потребуется какой-то новый, до сих пор еще не открытый тип математических пространств, занимающий промежуточное положение между двумя упомянутыми выше. Соответственно, мои рассуждения следует рассматривать только в эвристическом смысле, и они представляют собой скорее всего лишь

общие предположения, а не окончательные выводы. Тем не менее, я действительно считаю свои рассуждения сильным доводом в пользу глубинной связи между ГВКи R, откуда вытекает, что Rпроцедура действительно должна представлять собой эффект квантовой теории гравитации.

Повторю свои выводы еще раз: я выдвигаю гипотезу, согласно которой квантовомеханическая редукция вектора состояния действительно является оборотной стороной ГВК. В соответствии с этой гипотезой два важнейших следствия нашей искомой правильной квантовой теории гравитации ( ПКТГ) — это ГВКи процедура R. ГВКприводит к слиянию линий тока в фазовом пространстве, в то время как процедура Rприводит к расщеплению линий тока, в точности компенсирующему их слияние, вызванное ГВК. Оба процесса теснейшим образом связаны со вторым началом термодинамики.

Отметим, что слияние линий тока происходит только в области B, в то время как их расщепление может иметь место как внутри области A, также и внутри области B.

Вспомним, что Aпредставляет совокупность состояний, в которых черные дыры отсутствуют, и, следовательно, редукция вектора-состояния действительно возможна при отсутствии черных дыр. Ясно, что для выполнения Rсовсем необязательно иметь в лаборатории черную дыру (как в случае только что рассмотренного нами эксперимента с фотоном). Нас сейчас интересует лишь общий баланс между различными возможнымисобытиями в той или иной ситуации. В рамках излагаемой концепции отсутствие детерминизма в квантовой теории должно всего лишь компенсироваться возможностью образования черных дыр на некотором этапе (и следующей отсюда возможностью уничтожения информации)!

Когда происходит редукция вектора-состояния?

Предположим, что мы признаем, исходя из вышеизложенных соображений, что редукция вектора-состояния может каким-то образом оказаться гравитационным феноменом. Можно ли сформулировать связь между Rпроцедуройи гравитацией более явным образом? Когда, согласно этой концепции, должен фактическииметь место коллапс вектора состояния?

Здесь следует прежде всего отметить, что даже в рамках более «традиционных» подходов к построению квантовой теории гравитации согласование принципов обшей теории относительности с правилами квантовой механики наталкивается на определенные и весьма серьезные технические трудности. Эти правила (в первую очередь — интерпретация импульсов как дифференцирования по координатам в уравнении Шредингера — см. гл.7 «Космология и Большой взрыв») плохо вписываются в представление об искривленной геометрии пространства-времени. Я лично считаю, что введение «значительной» пространственно-временной кривизны влечет неизбежное нарушение правил квантовой линейной суперпозиции. Именно в этом случае суперпозиция комплексных амплитуд в принципе допустимых альтернатив заменяется набором вероятностно-взвешенных реальных альтернатив, из которых одна фактическиимеет место.

Что я понимаю здесь под «значительной» степенью кривизны? Я имею в виду достижение такой степени кривизны, при которой ее характерное значение становится сравнимым с одногравитонным [195] масштабом или превышает его. (Напомним, что, согласно правилам квантовой теории, электромагнитное поле «квантуется» на отдельные элементы, называемые «фотонами». При разложении поля на его частотные составляющие, компонента с частотой v может входить в это разложение только в виде целого числа фотонов, каждый с энергией равной hv . Предполагается, что аналогичные правила должны быть также применимы и к гравитационному полю.) Один гравитон — это минимальная единица кривизны, допускаемая квантовой теорией. Идея состоит в том, что при достижении этого уровня обычные правила линейной суперпозиции, предписываемые процедурой U, должны претерпеть определенные изменения при их применении к гравитонам, и при этом возникает некая асимметричная во времени «нелинейная неустойчивость». Мы получаем вместо комплексных суперпозиций неограниченно долго сосуществующих «альтернативных возможностей» ситуацию, когда одна из «возможностей» начинает на этом этапе одерживать верх над другими и система «перескакивает» в то или иное из альтернативных состояний. Возможно, что выбор одного из альтернативных состояний происходит случайно, а быть может, в его основе лежат какие-то более глубокие законы. Однако теперь реальность обретает вид одного из альтернативных состояний. Процедура Rосуществилась.

195

Следует допустить, что это как раз и есть так называемые продольные гравитоны — «виртуальные» гравитоны, из которых состоит статическое гравитационное поле. К сожалению, четкое и «инвариантное» математическое определение таких объектов связано с определенными теоретическими трудностями.

Отметим, что согласно этой гипотезе Rпроцедураосуществляется спонтанно, совершенно объективно и независимо от какого бы то ни было вмешательства человека. Идея состоит в том, что «одногравитонный уровень» должен находиться как раз между «квантовым уровнем» атомов, молекул и т. д., на котором хорошо действуют линейные правила ( U) обычной квантовой механики, и «классическим уровнем» нашего повседневного опыта. Насколько «велик» одногравитонный уровень? Отметим, что дело тут на самом деле не в физическом размере, а скорее в распределении массы и энергии. Как мы видели, эффекты квантовой интерференции могут возникать и на больших расстояниях при условии, что связанная с ними энергия мала. (Вспомним самоинтерференцию фотона, описанную на в гл. 6 «Одна частица — сразу в двух местах?», и эксперименты типа ЭПР, проведенные Клаузером и Аспектом, гл.6 «Эксперименты с фотонами: проблема для специальной теории относительности?»). Характерный масштаб массы в квантовой гравитации известен под названием планковской массы, приблизительно равной

Поделиться:
Популярные книги

70 Рублей

Кожевников Павел
1. 70 Рублей
Фантастика:
фэнтези
боевая фантастика
попаданцы
постапокалипсис
6.00
рейтинг книги
70 Рублей

Жатва душ. Остров мертвых

Сугралинов Данияр
Фантастика:
боевая фантастика
рпг
5.20
рейтинг книги
Жатва душ. Остров мертвых

Сердце Дракона. Том 9

Клеванский Кирилл Сергеевич
9. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.69
рейтинг книги
Сердце Дракона. Том 9

Как я строил магическую империю 6

Зубов Константин
6. Как я строил магическую империю
Фантастика:
попаданцы
аниме
фантастика: прочее
фэнтези
5.00
рейтинг книги
Как я строил магическую империю 6

Леди для короля. Оборотная сторона короны

Воронцова Александра
3. Королевская охота
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Леди для короля. Оборотная сторона короны

Кодекс Крови. Книга VI

Борзых М.
6. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга VI

Газлайтер. Том 4

Володин Григорий
4. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 4

АллатРа

Новых Анастасия
Научно-образовательная:
психология
история
философия
обществознание
физика
6.25
рейтинг книги
АллатРа

Газлайтер. Том 10

Володин Григорий
10. История Телепата
Фантастика:
боевая фантастика
5.00
рейтинг книги
Газлайтер. Том 10

Дорога к счастью

Меллер Юлия Викторовна
Любовные романы:
любовно-фантастические романы
6.11
рейтинг книги
Дорога к счастью

Газлайтер. Том 8

Володин Григорий
8. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 8

Камень Книга седьмая

Минин Станислав
7. Камень
Фантастика:
фэнтези
боевая фантастика
6.22
рейтинг книги
Камень Книга седьмая

Николай I Освободитель. Книга 2

Савинков Андрей Николаевич
2. Николай I
Фантастика:
героическая фантастика
альтернативная история
5.00
рейтинг книги
Николай I Освободитель. Книга 2

Секретарша генерального

Зайцева Мария
Любовные романы:
современные любовные романы
эро литература
короткие любовные романы
8.46
рейтинг книги
Секретарша генерального