Чтение онлайн

на главную - закладки

Жанры

Новый ум короля: О компьютерах, мышлении и законах физики
Шрифт:

Теперь должно стать ясно, как выполняются расчеты в квантовой механике. Зададимся вопросом:

«Если известно, что лампа L сработала, то какова вероятность того, что сработал фотоэлемент Р

Для ответа на этот вопрос учтем, что имеется амплитуда, равная 1 / 2 для фотона, прошедшего путь LMP , и амплитуда, равная 1 / 2 , для фотона, прошедшего путь LMA . Возведя эти амплитуды в квадрат, получаем соответствующие вероятности, равные 1 / 2 и 1 / 2 ,

попадания фотона в точки Р и А соответственно. Следовательно, на наш вопрос квантовая механика дает ответ, равный

« одной второй ».

И действительно, именно такой результат получился бы в случае проведения реального эксперимента.

Мы могли бы с таким же успехом использовать экстравагантную процедуру «с обращенным вспять временем» и получили бы тот же самый результат. Предположим, что мы зафиксировали факт срабатывания фотоэлемента в точке Р . Рассмотрим направленную вспять во времени волновую функцию фотона в предположении, что фотон в конце концов приходит в точку Р . Отслеживая эволюцию процесса назад во времени, мы видим, что фотон движется назад от Р , пока не достигнет зеркала М . В этой точке происходит бифуркация волновой функции и мы имеем амплитуду 1 / 2 того, что фотон достигнет лампы L , и амплитуда 1 / 2 того, что фотон претерпит отражение в точке М и придет в другую точку на лабораторной стене, а именно в точку В на рис. 8.3. Возводя соответствующие амплитуды в квадрат, мы снова получаем для обеих вероятностей значения, равные одной второй. Следует, однако, отдавать себе отчет в том, на какие именно вопросы отвечают эти вероятности. А вопросы следующие: «Если известно, что лампа L сработала, то какова вероятность срабатывания фотоэлемента Р ?» — тот же самый вопрос, что мы рассматривали до этого; и более экстравагантный вопрос: «Какова вероятность срабатывания фотоэлемента Р при условии, что известен факт испускания фотона из стены в точке В

Мы можем рассматривать оба ответа как экспериментально «правильные» в определенном смысле, хотя второй ответ (испускание фотона из стены) скорее представляет собой логическое умозаключение, а не результат реально выполненногоряда экспериментов! Однако ни один из этих вопросов не является обращением во временитого, что был задан выше. Обращенный вспять во времени вопрос звучал бы так:

«Если известно, что фотоэлемент Р сработал, то какова вероятность того, что сработала лампа L

Отметим, что правильный экспериментальный ответ на этот вопрос — это никакая не « одна вторая », а

« единица ».

В случае срабатывания фотоэлемента нет практически никаких сомнений в том, что фотон пришел от лампы, а не от лабораторной стены! На наш обращенный во времени вопрос проведенный в рамках квантовой механики расчет дал нам абсолютно неверный ответ!

Отсюда следует, что правила Rчастиквантовой механики просто-напросто неприменимы к такого рода обращенным во времени задачам. Если мы хотим рассчитать вероятность прошлого состояния исходя из известного состояния в будущем, то применение стандартной Rпроцедуры, которая заключается в простом возведении в квадрат модуля квантово-механической амплитуды, приводит к неверным результатам. Эта процедура пригодна только для расчета вероятностей будущихсобытий исходя из прошлыхсобытий — и в этом случае она работает великолепно! Поэтому я считаю совершенно очевидным, что Rпроцедура не может быть симметрична во времени(и, между прочим, вследствие этого не выводима из симметричной во времени процедуры U).

Многие могут посчитать, что причина этого противоречия с временной симметрией состоит в том, что второму началу термодинамики каким-то образом все же удалось пролезть в цепь рассуждений и привнести дополнительную асимметрию во времени, не описываемую процедурой возведения амплитуды в квадрат. Действительно, кажется, что любой физический измерительный прибор, способный реализовать Rпроцедуру, должен содержать

элемент «термодинамической необратимости» — так, что энтропия возрастает всякий раз, когда имеет место измерение. Я думаю, что процесс измерения должен быть фундаментальным образом связан со вторым началом термодинамики. Более того, по-видимому попытки обратить вспять во времени целиком весьпроцесс квантово-механического эксперимента, вроде описанного выше (идеализированного) опыта, с регистрацией всех проведенных измерений, бессмысленны. Я не задавался вопросом о том, как далеко мы можем пойти по пути действительного обращения эксперимента во времени. Меня интересовала только применимость этой замечательной квантово-механической процедуры, которая дает правильные вероятности через вычисление квадратов модулей амплитуд. Поразительно, что эта простая процедура применима в направлении от прошлого к будущему и при этом не требует никакой дополнительной информации о системе. Действительно, невозможностьповлиять на эти вероятности, которые в квантовой теории являются абсолютно случайными, представляет собой одну из неотъемлемых частей рассматриваемой теории! Однако попытка применить те же самые процедуры в направлении от будущего к прошлому (т. е. не для предсказания будущего, а для установления прошлого) приводит к результату неверному до удивления. Можно приводить сколько угодно оправданий, смягчающих обстоятельств и других доводов для объяснения того, почемупроцедура возведения амплитуды в квадрат не дает правильных результатов в случае применения ее в направлении от будущего к прошлому, но факт остается фактом. А при рассмотрении ситуации от прошлого к будущему никакие оправдания попросту не нужны! Процедура R, в том виде, как она реально применяется, просто-напросто не является симметричной во времени.

Ящик Хокинга: связь с гипотезой о вейлевской кривизне?

Как бы то ни было, а читатель вне всякого сомнения подумает: какое все это имеет отношение к ГВКили ПКТГ? Действительно, второе начало термодинамики, в его настоящем виде, вполне может быть частью процедуры R, но вот где тут в этих непрерывных «каждодневных» актах редукции вектора состояния может найтись место сколь-нибудь заметным эффектам пространственно-временных сингулярностей?

Чтобы прояснить этот вопрос, я хочу, хотя и с совершенно иной целью, описать здесь фантастический «мысленный эксперимент», первоначально предложенный Стивеном Хокингом.

Представьте себе герметичный ящик чудовищных размеров. Его стенки предполагаются абсолютно отражающими и непроницаемыми для любого воздействия. Сквозь них не может пройти никакой материальный объект, в том числе никакой электромагнитный сигнал, нейтрино и вообще все что угодно. Стенки отражают обратно любой объект, независимо от того, приходит ли он снаружи или изнутри, и даже действие гравитации не может проникнуть сквозь них. Такие стенки невозможно сделать ни из одного существующего в природе вещества. Никто в действительности не в состоянии выполнитьописанный ниже «эксперимент». (И, как мы увидим, никто и не захочет этого делать!) Важно не это. Целью мысленного эксперимента является раскрытие общих принципов путем простого мысленного рассмотрения в принципе выполнимыхопытов. Технические проблемы игнорируются при условии, что они не связаны с рассматриваемыми общими принципами. (Вспомним дискуссию о шредингеровской кошке в главе 6.) В нашем случае проблемы сооружения стенок ящика должны рассматриваться с точки зрения стоящих перед нами целей как чисто «технические», и, следовательно, ими надо пренебречь.

Внутри ящика находится большое количество вещества. Для нас не имеет значения, что это за вещество. Нас интересует только его полная масса М , которая должна быть очень большой, а также большой объем V , в который она заключена. Что же мы собираемся делать с этим дорогостоящим ящиком, а также с его совершенно неинтересным содержимым? Мы произведем самый занудный из опытов, какой только можно себе вообразить. Оставим ящик в покое — навечно!

Нас интересует окончательная судьба того, что находится внутри. Согласно второму началу термодинамики, энтропия содержимого ящика должна возрастать, пока не достигнет максимума, а вещество — состояния «теплового равновесия». После этого уже не будет происходить практически ничего интересного, если не считать «флуктуаций», приводящих к (относительно) кратковременным отклонениям от теплового равновесия. В нашей ситуации мы полагаем М достаточно большим при соответствующем V (т. е. оченьбольшом, но не слишком большом), так что к моменту достижения «теплового равновесия» большая часть вещества сколлапсирует в черную дыру, окруженную совсем небольшим количеством вещества, и излучения, которые образуют (очень холодную!) тепловую ванну с погруженной в нее черной дырой. Чтобы быть конкретнее, примем М равной массе Солнечной системы, а V — размеру Млечного Пути! В этом случае температура «ванны» составит всего 10 – 7 градуса выше абсолютного нуля!

Поделиться:
Популярные книги

Жандарм 4

Семин Никита
4. Жандарм
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Жандарм 4

Прорвемся, опера! Книга 2

Киров Никита
2. Опер
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Прорвемся, опера! Книга 2

Шайтан Иван 2

Тен Эдуард
2. Шайтан Иван
Фантастика:
боевая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Шайтан Иван 2

Архил...? 4

Кожевников Павел
4. Архил...?
Фантастика:
фэнтези
попаданцы
альтернативная история
5.50
рейтинг книги
Архил...? 4

Идеальный мир для Лекаря 6

Сапфир Олег
6. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 6

Вперед в прошлое!

Ратманов Денис
1. Вперед в прошлое
Фантастика:
попаданцы
5.00
рейтинг книги
Вперед в прошлое!

Кротовский, не начинайте

Парсиев Дмитрий
2. РОС: Изнанка Империи
Фантастика:
городское фэнтези
попаданцы
альтернативная история
5.00
рейтинг книги
Кротовский, не начинайте

Крестоносец

Ланцов Михаил Алексеевич
7. Помещик
Фантастика:
героическая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Крестоносец

Фиктивный брак

Завгородняя Анна Александровна
Фантастика:
фэнтези
6.71
рейтинг книги
Фиктивный брак

Николай I Освободитель. Книга 2

Савинков Андрей Николаевич
2. Николай I
Фантастика:
героическая фантастика
альтернативная история
5.00
рейтинг книги
Николай I Освободитель. Книга 2

Убивать чтобы жить 2

Бор Жорж
2. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 2

Корпулентные достоинства, или Знатный переполох. Дилогия

Цвик Катерина Александровна
Фантастика:
юмористическая фантастика
7.53
рейтинг книги
Корпулентные достоинства, или Знатный переполох. Дилогия

Барон устанавливает правила

Ренгач Евгений
6. Закон сильного
Старинная литература:
прочая старинная литература
5.00
рейтинг книги
Барон устанавливает правила

Отдельный танковый

Берг Александр Анатольевич
1. Антиблицкриг
Фантастика:
боевая фантастика
альтернативная история
5.00
рейтинг книги
Отдельный танковый