Чтение онлайн

на главную - закладки

Жанры

Охота на электроовец. Большая книга искусственного интеллекта
Шрифт:

4.2.5 Два английских джентльмена и долгопёрый прибрежный кальмар

Дальнейшее развитие идей Лапика в рамках вычислительной нейробиологии привело к появлению множества более точных и полных моделей биологического нейрона. В их числе модели «интегрировать-и-сработать с утечками» [leaky integrate-and-fire], «интегрировать-и-сработать с утечками дробного порядка» [fractional-order leaky integrate-and-fire], модель Гальвеса — Лёкербаха [Galves–Locherbach model], «экспоненциальный вариант модели „интегрировать-и-сработать“» [exponential integrate-and-fire] и многие другие. Поскольку погружение в пучины вычислительной нейробиологии стоило бы нам нескольких сотен страниц, переполненных формулами и экспериментальными данными, мы остановимся здесь только на одном из ключевых исследований в этой области, обойти которое никак нельзя — тем более что его авторы в 1963 г. получили за него Нобелевскую премию

в области физиологии и медицины. Речь, разумеется, об исследованиях сэра Алана Ходжкина, ученика Эдриана, и сэра Эндрю Хаксли. Эти два почтенных английских джентльмена навсегда останутся в истории науки благодаря тому, что любили резать кальмаров не только за ужином, но и на протяжении всего рабочего дня.

Интересно, что Эндрю Хаксли был не только братом другого знаменитого биолога, Джулиана Хаксли, одного из основателей Синтетической теории эволюции, не только братом знаменитого писателя Олдоса Хаксли (подарившего миру знаменитый роман-антиутопию «О дивный новый мир»), но и внуком Томаса Гексли, известного учёного-эволюциониста и популяризатора науки, получившего прозвище Бульдог Дарвина. Как вы уже, наверное, догадались, Гексли и Хаксли — это одна и та же фамилия, которую в разные годы по-разному записали по-русски.

Рис. 81. Долгопёрый прибрежный кальмар

Долгопёрый прибрежный кальмар (Doryteuthis pealeii), как и другие кальмары, является чрезвычайно удобным для нейрофизиологов модельным организмом благодаря наличию у него гигантских аксонов.

Гигантский аксон кальмаров — это очень большой (обычно около 0,5 мм в диаметре, но иногда достигает 1,5 мм) аксон, который контролирует часть водореактивной системы кальмара, используемой им в основном для коротких, но очень быстрых перемещений в воде. Впервые гигантский аксон описан Леонардом Уильямсом в 1909 г., однако это открытие было забыто более чем на двадцать лет, вплоть до исследований английского зоолога и нейрофизиолога Джона Янга в 1930-е гг.

Между щупальцами кальмара расположен сифон, через который вода может быстро выталкиваться за счёт сокращений мышц стенки тела животного. Это сокращение инициируется потенциалами действия в гигантском аксоне. Поскольку электрическое сопротивление обратно пропорционально площади поперечного сечения объекта, потенциалы действия распространяются быстрее в большем аксоне, чем в меньшем. Поэтому увеличение диаметра гигантского аксона поддерживалось в процессе эволюции, так как позволяло увеличить скорость мышечной реакции.

Это стало настоящим подарком для Ходжкина и Хаксли, которых интересовал ионный механизм потенциалов действия, — ведь благодаря большому диаметру аксона в его просвет можно было невозбранно установить электроды!

Рис. 82. Гигантский аксон кальмара

В итоге учёные создали модель Ходжкина — Хаксли, но для её рассмотрения надо вначале поговорить о механизмах, лежащих в основе нервной проводимости.

Мембрана (оболочка) нейрона поляризована. Это означает, что существует постоянная разность потенциалов между внутренней и наружной поверхностью клеточной мембраны. Эта разность получила название «мембранный потенциал». Мембранный потенциал нейрона в обычном состоянии («потенциал покоя») отрицателен и у млекопитающих равен примерно –70 мВ. Смещение мембранного потенциала в отрицательную сторону относительно потенциала покоя называется гиперполяризацией, а в положительную — деполяризацией. Под воздействием слабых (подпороговых) импульсов электрического тока в клетке возникает «электротонический потенциал», то есть сдвиг мембранного потенциала клетки, вызываемый действием постоянного электрического тока. Передача импульса по нервным волокнам происходит в виде волны возбуждения, в основе которой лежат электротонические потенциалы и потенциалы действия, которые распространяются вдоль нервного волокна.

В участках нервного волокна, изолированных миелиновыми оболочками, распространение электрических импульсов происходит очень быстро, скачкообразно. Почему это происходит, позволяет понять школьный курс физики. Электрический ток — это направленный поток частиц — носителей электрического заряда в проводнике. Такими частицами в случае металлов являются электроны, а в случае электролитов — ионы. Цитоплазма нейронов — это электролит, в котором функцию переноса зарядов выполняют различные типы ионов. Вообще говоря,

этих типов ровно четыре: положительно заряженные ионы калия, кальция и натрия и отрицательно заряженные ионы хлора. Пока разность потенциалов на разных концах изолированного проводника отсутствует, заряженные частицы движутся хаотически, в разных направлениях. Как только возникает разность потенциалов на одном из концов проводника, частицы практически мгновенно выстраиваются в цепочку, благодаря чему тут же возникает разность потенциалов на втором конце изолированного проводника. Распространение электрического сигнала тем самым происходит со скоростью света, что куда быстрее скорости перемещения самих заряженных частиц в проводнике. Например, скорость движения электронов в металлическом проводнике составляет доли миллиметра в секунду (величина этой скорости зависит от величины разности потенциалов), а скорость распространения электрического тока — порядка 300 000 км/с.

Однако в случае, когда проводник не изолирован или изолирован плохо, скорость распространения сигнала сильно падает из-за утечек. Мембраны нейронов содержат молекулярные механизмы, отвечающие за регуляцию разности потенциалов между внутренним пространством клеток и внешней средой. Это ионные насосы (помпы) и ионные каналы.

Ионные насосы — специальные белки, которые обеспечивают активный перенос ионов из области с меньшей концентрацией в область с большей концентрацией за счёт энергии гидролиза аденозинтрифосфорной кислоты (АТФ). Именно в результате работы ионных насосов создаётся и поддерживается разность концентрации ионов по обе стороны мембраны (так называемый трансмембранный ионный градиент).

Ионные каналы — белки (или белковые комплексы), которые обеспечивают пассивный транспорт ионов из области с большей концентрацией в область с меньшей концентрацией как раз за счёт разности концентраций. Ионные каналы делятся на селективные и неселективные. Последние всегда находятся в открытом состоянии и пропускают все типы ионов (при этом их проницаемость для положительно заряженных ионов кальция значительно выше, чем для других ионов). Селективные каналы пропускают только один вид ионов — для каждого вида ионов существует свой вид каналов. При этом селективные каналы могут находиться в одном из трёх состояний: активированном, инактивированном и закрытом [1050] .

1050

Сандаков Д. Б. (2011). Возбуждение и его механизмы / Электронный учебник по курсу «Физиология человека и животных» // http://www.bio.bsu.by/phha/01/01_text.html

Кроме того, в зависимости от способа управления, ионные каналы подразделяются на потенциал-зависимые (потенциал-управляемые), лиганд-зависимые (лиганд-управляемые), стимул-управляемые, неуправляемые, а также некоторые другие, на которых мы не будем заострять особого внимания.

Потенциал-зависимые ионные каналы открываются и закрываются в ответ на изменение мембранного потенциала. Лиганд-зависимые каналы открываются, когда вещество-нейромедиатор, связываясь с их наружными рецепторными участками в синаптической щели, меняет их конформацию (т. е. пространственное расположение атомов в молекуле). Стимул-управляемые каналы открываются ввиду действия какого-либо стимула и бывают механочувствительные, протон-активируемые, температурно-чувствительные и так далее. Что касается неуправляемых каналов, то они, как можно догадаться из их названия, постоянно находятся в открытом состоянии [1051] , [1052] .

1051

Сазонов В. Ф. (2011). Функциональная классификация мембранных ионных каналов / Научные труды III Съезда физиологов СНГ. — М.: Медицина-Здоровье. С. 72 // http://www.physiology-cis.org/files/YA2011_Proceedings.pdf

1052

Сазонов В. Ф. (2017). Ионные каналы мембраны / Кинезиолог // http://kineziolog.bodhy.ru/content/ionnye-kanaly-membrany

Однако даже и в изолированном миелином нервном волокне электрический сигнал постепенно затухает. Поэтому, чтобы компенсировать этот эффект, и требуются упомянутые ранее перехваты Ранвье. Они выполняют роль своеобразных «трансформаторных подстанций», усиливающих сигнал до необходимого уровня. Таким образом, электрический импульс в миелинизированных волокнах перескакивает от одного перехвата к другому, чтобы получить в нём очередное подкрепление. Такой механизм хорошо объясняет экспериментальные результаты, полученные Эдрианом, Като и их коллегами.

Поделиться:
Популярные книги

Маршал Сталина. Красный блицкриг «попаданца»

Ланцов Михаил Алексеевич
2. Маршал Советского Союза
Фантастика:
альтернативная история
8.46
рейтинг книги
Маршал Сталина. Красный блицкриг «попаданца»

А небо по-прежнему голубое

Кэрри Блэк
Фантастика:
фэнтези
5.00
рейтинг книги
А небо по-прежнему голубое

Душелов. Том 2

Faded Emory
2. Внутренние демоны
Фантастика:
фэнтези
боевая фантастика
аниме
5.00
рейтинг книги
Душелов. Том 2

Даррелл. Тетралогия

Мельцов Илья Николаевич
Даррелл
Фантастика:
фэнтези
боевая фантастика
5.00
рейтинг книги
Даррелл. Тетралогия

Кодекс Охотника. Книга VII

Винокуров Юрий
7. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
4.75
рейтинг книги
Кодекс Охотника. Книга VII

Этот мир не выдержит меня. Том 2

Майнер Максим
2. Первый простолюдин в Академии
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Этот мир не выдержит меня. Том 2

Третий. Том 4

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий. Том 4

Злыднев Мир. Дилогия

Чекрыгин Егор
Злыднев мир
Фантастика:
фэнтези
7.67
рейтинг книги
Злыднев Мир. Дилогия

На распутье

Кронос Александр
2. Лэрн
Фантастика:
фэнтези
героическая фантастика
стимпанк
5.00
рейтинг книги
На распутье

Санек 3

Седой Василий
3. Санек
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Санек 3

Золушка вне правил

Шах Ольга
Любовные романы:
любовно-фантастические романы
6.83
рейтинг книги
Золушка вне правил

Прометей: повелитель стали

Рави Ивар
3. Прометей
Фантастика:
фэнтези
7.05
рейтинг книги
Прометей: повелитель стали

Альмар. Мой новый мир. Дилогия

Ищенко Геннадий Владимирович
Альмир
Фантастика:
фэнтези
попаданцы
8.09
рейтинг книги
Альмар. Мой новый мир. Дилогия

Дочь моего друга

Тоцка Тала
2. Айдаровы
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Дочь моего друга