Чтение онлайн

на главную - закладки

Жанры

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Шрифт:
Результат Харди 1914 года

Бесконечно много нетривиальных нулей дзета-функции удовлетворяют Гипотезе Римана (т.е. имеют вещественную часть одна вторая).

Хотя это и был значительный шаг вперед, для читателя важно понимать, что это не решило вопроса с Гипотезой. Имеется бесконечно много нетривиальных нулей; Харди доказал, что бесконечно много из них имеют вещественную часть одна вторая. Тем самым остаются открытыми три возможности.

• Бесконечно много нулей не имеют вещественную часть одна вторая.

• Лишь конечное число нулей не имеет вещественной части одна вторая.

• Нет нулей, вещественная часть которых не равна одной второй, — утверждение Гипотезы!

Чтобы провести аналогию, рассмотрим следующие утверждения о четных числах, превосходящих двойку, т.е. 4, 6, 8, 10, 12, …

• Бесконечно много этих чисел делится на 3; бесконечно много не делится.

• Бесконечно много из них больше чем 11; только четыре числа не больше.

Бесконечно много из них представимы в виде суммы двух простых; нет таких, которые не представимы — гипотеза Гольдбаха (которая все еще не доказана на момент написания книги).

Статья Литлвуда, также опубликованная в Comptes RendusПарижской академии наук в том же году, называлась Sur la distribution des nombres premiers. В ней доказан результат столь же тонкий и столь же замечательный, как результат Харди, хотя и относящийся к несколько другому направлению исследований в данной области. Обсуждение этого результата требует небольшой преамбулы.

VI.

Мы уже отмечали, что в начале XX века наблюдалось следующее общее направление мыслей по поводу Гипотезы Римана. Теорема о распределении простых чисел (ТРПЧ) была доказана. С математической точностью было установлено, что действительно (x)~ Li (x) — или, словами, что относительная разность между (x)и Li (x)уменьшается до нуля по мере того, как xделается все больше и больше. Так что же тогда можно утверждать об этой разности — т.е. об остаточном члене? Именно при внимательном рассмотрении остаточного члена математики обратили свои взоры к Гипотезе Римана, поскольку в работе Римана 1859 года для остаточного члена было приведено точное выражение. Как будет показано в должном месте, это выражение включает в себя все нетривиальные нули дзета-функции, так что ключ к пониманию остаточного члена каким-то образом скрыт среди этих нулей.

Чтобы говорить более конкретно, я приведу некоторые реальные значения остаточного члена. В таблице 14.1 «абсолютн.» означает разность Li (x) - (x), а «относит.» означает это же число, отнесенное к (т.е. деленное на) (x).

Таблица 14.1.

Мы видим, что относительная ошибка, без сомнения, уменьшается, стремясь к нулю, как ей и предписывает ТРПЧ. Это происходит потому что, хотя абсолютная ошибка тоже растет, она делает это далеко не так быстро, как (x).

Пытливый математический ум сейчас спросит: «А как именно ведут себя эти два числа?» Имеются ли правила, описывающие медленный рост абсолютной ошибки или стремление относительной ошибки к нулю? Другими словами, если выкинуть из таблицы 14.1 вторую и четвертую колонки и рассмотреть получившуюся двухколоночную таблицу как «моментальный снимок» некоторой функции (колонки аргумент-значение), то что это будет за функция? Можно ли для нее получить формулу с волнами, как это было сделано для (x)?

Здесь-то на сцене и появляются нетривиальные нули дзета-функции. Они тесно связаны (способом, который мы рассмотрим ниже во всех математических подробностях) с остаточным членом.

Хотя в ТРПЧ говорится об относительной ошибке, исследования в этой области в большей степени имеют дело с абсолютной ошибкой. На самом деле неважно, какую из них рассматривать. Относительная ошибка есть просто абсолютная ошибка, деленная на (x), так что в любой момент несложно перейти от одной к другой. Итак, можно ли получить какие-нибудь результаты об абсолютном остаточном члене Li (x) - (x)?

VII.

Взглянув на рисунок 7.6 и таблицу 14.1 , можно с достаточной уверенностью заключить, что абсолютная разность Li (x) - (x)положительна и возрастает. Численные свидетельства в пользу этого так убедительны, что Гаусс в своих собственных исследованиях полагал, что всегда так и происходит. Весьма вероятно, что исследователи поначалу соглашались с тем, или, по крайней мере, чувствовали уверенность в том, что (x)всегда меньше чем Li (x). (Относительно мнения Римана по этому поводу ясности нет.) Поэтому статья Литлвуда 1914 года оказалась сенсацией, ибо в ней было установлено, что, напротив, существуют такие числа x, что (x)больше чем Li (x). На самом деле доказано было гораздо большее.

Результат Литлвуда 1914 года

Разность Li (x) - (x)изменяется

от положительной к отрицательной и обратно бесконечно много раз.

Если учесть, что (x)меньше, чем Li (x), для всех x, до которых смогли добраться даже самые мощные компьютеры, то где же находится первая точка перехода, первое «литлвудово нарушение», когда (x)становится равной, а затем и превосходит Li (x)?

В подобных ситуациях математики отправляются на поиски того, что они называют верхней границей, — такого числа N, для которого можно доказать, что, каким бы ни был точный ответ на данный вопрос, он во всяком случае будет меньше, чем N.Установленные верхние границы такого рода нередко оказываются много больше, чем реальный ответ [131] .

Так и обстояло дело с первой установленной верхней границей литлвудова нарушения. В 1933 году студент Литлвуда Сэмюель Скьюз показал, что если Гипотеза Римана верна, то переход должен наступать раньше, чем

, что представляет собой число из примерно 10 десять миллиардов триллионов триллионовцифр. Это не само число — это число цифрв том числе. (Для сравнения заметим, что общее количество всех атомов во Вселенной оценивается числом из примерно восьмидесяти цифр.) Этот монстр получил известность как «число Скьюза» — самое большое число, которое когда-либо до того следовало из математического доказательства. [132]

131

Разумеется, предпочтительнее знать точный ответ; но речь идет о том, что часто удается доказать лишь менее строгое ограничение. (Примеч. перев.)

132

В задачах такого типа имеются еще и нижние границы. Нижняя граница — это такое число N, для которого можно доказать, что, каков бы ни был точный ответ, он заведомо больше, чем N. В случае с литлвудовым нарушением, похоже, сделано куда меньше — можно думать, из-за того, что все знают, что точное значение числа, при котором происходит первое нарушение, необычайно велико. Делеглиз и Риват в 1996 г. установили в качестве нижней границы 10 18, а позднее довели нижнюю границу до 10 20, однако ввиду результата Бейса и Хадсона подобные нижние границы почти ничего не значат.

В 1955 году Скьюз улучшил свой результат, на этот раз даже не предполагая справедливости Гипотезы Римана, и оказалось, что новое число содержит 10 одна тысячацифр. В 1966 году Шерман Леман сумел понизить верхнюю границу до куда более разумного (по крайней мере, позволяющего себя записать) числа 1,165x10 1165(числа, другими словами, из каких-то 1166 цифр), а потом еще сильнее, до 6,658x10 370.

На момент написания книги (середина 2002 года) лучшее достижение принадлежит Картеру Бейсу и Ричарду Хадсону, которые также исходили из теоремы Лемана. [133] Они показали, что имеются литлвудовы нарушения в окрестности числа 1,39822x10 316, а также привели некоторые аргументы в пользу того, что это нарушение может оказаться первым. (Статья Бейса и Хадсона оставляет открытой маленькую лазейку для существования нарушений на более малых высотах, возможно, даже на столь низкой высоте, как 10 176. Они также установили существование грандиозной зоны нарушений вблизи числа 1,617x10 9608.)

133

Если имена Бейса и Хадсона кажутся знакомыми, то это из-за того, что они упоминались в главе 8.iv в связи с отклонением Чебышева. На самом деле на очень глубоком уровне, определенно слишком глубоком, чтобы здесь о нем говорить, имеется родство между тенденцией функции Li (x)быть больше, чем (x), и чебышевскими отклонениями. В теории чисел эти два вопроса обычно рассматриваются совместно. В действительности в работе Литлвуда 1914 г. показано не только, что тенденция функции Li (x)быть больше, чем (x), нарушается бесконечно много раз, но и что тоже самое верно для чебышевских отклонений. По поводу некоторых недавних. весьма впечатляющих и глубоких результатов по этому вопросу см. статью Майкла Рубинстейна и Питера Сарнака Chebyshev's biasв журнале: Experimental Mathematics. 1994. Vol. 3. P. 173-197.

Поделиться:
Популярные книги

Хозяин Теней 3

Петров Максим Николаевич
3. Безбожник
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Хозяин Теней 3

Кротовский, не начинайте

Парсиев Дмитрий
2. РОС: Изнанка Империи
Фантастика:
городское фэнтези
попаданцы
альтернативная история
5.00
рейтинг книги
Кротовский, не начинайте

Первый среди равных. Книга V

Бор Жорж
5. Первый среди Равных
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Первый среди равных. Книга V

Барон не признает правила

Ренгач Евгений
12. Закон сильного
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Барон не признает правила

Один на миллион. Трилогия

Земляной Андрей Борисович
Один на миллион
Фантастика:
боевая фантастика
8.95
рейтинг книги
Один на миллион. Трилогия

На границе империй. Том 10. Часть 7

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 7

Наследник павшего дома. Том I

Вайс Александр
1. Расколотый мир
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Наследник павшего дома. Том I

Сержант. Назад в СССР. Книга 4

Гаусс Максим
4. Второй шанс
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Сержант. Назад в СССР. Книга 4

Лейб-хирург

Дроздов Анатолий Федорович
2. Зауряд-врач
Фантастика:
альтернативная история
7.34
рейтинг книги
Лейб-хирург

Измена. Право на семью

Арская Арина
Любовные романы:
современные любовные романы
5.20
рейтинг книги
Измена. Право на семью

Неверный

Тоцка Тала
Любовные романы:
современные любовные романы
5.50
рейтинг книги
Неверный

Ищу жену для своего мужа

Кат Зозо
Любовные романы:
любовно-фантастические романы
6.17
рейтинг книги
Ищу жену для своего мужа

Газлайтер. Том 10

Володин Григорий
10. История Телепата
Фантастика:
боевая фантастика
5.00
рейтинг книги
Газлайтер. Том 10

Плеяда

Суконкин Алексей
Проза:
военная проза
русская классическая проза
5.00
рейтинг книги
Плеяда