Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Шрифт:
Грандиозность того, что получается, начинает внушать некоторые опасения. А ведь нам предстоит перемножить бесконечное число скобок! Фокус состоит в том, чтобы посмотреть на это дело глазами математика. Из чего составлено выражение (15.2) ? Ну, это сумма некоторого числа членов. Как эти члены выглядят? Выберем наугад какой-нибудь один из них, скажем aqvy. Сюда входит aиз первой скобки, qиз второй, vиз третьей и yиз четвертой. Это произведение, составленное из чисел, выбранных по одному из каждой скобки. И все выражение целиком получается в результате всех возможных комбинаций того, как мы выбираем эти числа из скобок.
Как только вы смогли это увидеть, перемножение бесконечного числа скобок больше не проблема.
Первый член в бесконечной сумме: берем 1 из каждой скобки. Это даст бесконечное произведение 1x1x1x1x1x…, значение которого есть, конечно, просто 1.
Второй член: берем 1 из всех скобок, кроме первой. Из первой же возьмем
Третий член: берем 1 из каждой скобки, кроме второй. А из второй возьмем
Четвертый член… Я думаю, понятно, что, если брать 1 из каждой скобки, кроме n– й, мы получим слагаемое равное
Но это еще не конец. При перемножении скобок возникает сумма всех возможных членов,получаемых взятием одного числа из каждой скобки. Предположим, мы выбрали
(Заметим, что здесь работают два простых правила арифметики. Одно — это правило знаков, гласящее, что минус умножить на минус дает плюс, а другое — 7-е правило действий со степенями, согласно которому (xxy) n= x nxy n.)
Так что наряду с членами, уже собранными в выражении (15.3) , имеется новый набор, каждый член в котором происходит из каждой пары простых чисел, как 5 и 13, и которые все входят со знаком плюс. Таким образом, выражение (15.3) разрослось до такого:
где каждое число во второй строке есть произведение двух различных простых.
А ведь мы едва начали нашу деятельность по перемножению бесконечного числа скобок. Следующий шаг состоит в том, чтобы перебрать все возможные способы выбрать
где каждое число в третьей строке есть произведение трех различных простых.
В предположении, что мы продолжаем так поступать, а также в предположении, что получающиеся члены можно переставлять, как мы пожелаем, выражение (15.1) превращается в следующее (15.4):
Натуральные числа в правой части — это… что? Это заведомо не все натуральные числа: 4, 8, 9 и 12 там отсутствуют. Но и не простые: присутствующие там 6, 10, 14 и 15 не являются простыми. Если оглянуться на процесс перемножения этого бесконечного количества скобок, то станет ясно, что ответ такой: каждое натуральное число, которое равно произведению нечетного числа (включая 1) различных простых, взятое со знаком минус, и, кроме того, каждое натуральное число, которое равно произведению четного числа различных простых, взятое со знаком плюс. Отсутствуют такие числа, как 4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, … — т.е. числа, которые делятся на квадрат некоторого простого.
Поприветствуем функцию Мебиуса! Она названа по имени немецкого математика и астронома Августа Фердинанда Мебиуса (1790–1868). [137]
Рисунок 15.4.Лента Мебиуса и муравей на ней.
В наше время ее общепринято обозначать греческой буквой , что произносится как «мю» — греческий эквивалент буквы «м». [138] Приведем полное определение функции Мебиуса.
137
Мебиуса более всего помнят за ленту (лист) Мебиуса, показанную на рисунке 15.4, которую сам он придумал в 1858 г. (Ранее она была описана другим математиком, Йоханом Листингом, также в 1858 г. Листинг опубликовал свое открытие, а Мебиус — нет, так что, согласно академическим правилам, ее следовало бы называть «лентой Листинга». Мир устроен несправедливо.) Чтобы сделать ленту Мебиуса, надо взять полоску бумаги за концы (один конец в правой руке, другой — в левой), перекрутить один из них на 180 градусов и склеить их друг с другом. Получится односторонняя поверхность — муравей может переползти из любой точки на полосе в любую другую точку, не перелезая при этом через край.
138
Если вам кажется, что выбор буквы, указывающей на свое собственное имя, было проявлением тщеславия со стороны Мебиуса, то сообщу вам, что сам Мебиус при первом описании своей функции в 1832 г. не использовал буквы ; виновник появления — Франц Мертенс, который ввел ее в 1874 г., причем в честь Мебиуса, к тому времени уже скончавшегося, а не в свою.
• Ее область определения есть N, то есть все натуральные числа 1, 2, 3, 4, 5, ….
• (1) = 1.
• ( n) = 0, если среди делителей числа nесть квадрат.
• ( n) = -1, если число nпростое или является произведением нечетного числа различных простых чисел.
• ( n) = 1, если число nявляется произведением четного числа различных простых чисел.
Такое определение функции может показаться вам страшно громоздким. Однако функция Мебиуса приносит колоссальную пользу в теории чисел и далее в этой книге будет играть ведущую роль. В качестве примера приносимой ею пользы заметим, что все трудоемкие алгебраические действия, через которые нам пришлось продираться, сводятся к изящному выражению (15.5):
B истории Гипотезы Римана наряду с самой функцией (n)не меньшую роль играет ее нарастающее значение, т.е. результат сложения (1) + (2) + (3) + … + ( k) для некоторого числа k. Так определяется «функция Мертенса» М(k). Ее первые 10 значений (т.е. значения при k= 1, 2, 3, …, 10) равны 1, 0, -1, -1, -2, -1, -2, -2, -2, -1. Функция M(k)весьма нерегулярна — она совершает колебания в обе стороны вокруг нулевого значения в стиле, который математики называют «случайными блужданиями». Для аргументов, равных 1000, 2000, …, 10 000, ее значения равны 2, 5, -6, -9, 2, 0, -25, -1, 1, -23. Для аргументов миллион, 2 миллиона, …, 10 миллионов ее значения равны 212, -247, 107, 192, -709, 257, -184, -189, -340, 1037. Если не обращать внимания на знаки, то видно, что величина функции M(k)возрастает, но помимо этого никакой ясной картины не просматривается.