Чтение онлайн

на главную - закладки

Жанры

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Шрифт:
apux + aqux + bpux + bqux + apvx + aqvx + bpvx + bqvx + apuy + aquy + bpuy + bquy + apvy + aqvy + bpvy + bqvy. (15.2)

Грандиозность того, что получается, начинает внушать некоторые опасения. А ведь нам предстоит перемножить бесконечное число скобок! Фокус состоит в том, чтобы посмотреть на это дело глазами математика. Из чего составлено выражение (15.2) ? Ну, это сумма некоторого числа членов. Как эти члены выглядят? Выберем наугад какой-нибудь один из них, скажем aqvy. Сюда входит aиз первой скобки, qиз второй, vиз третьей и yиз четвертой. Это произведение, составленное из чисел, выбранных по одному из каждой скобки. И все выражение целиком получается в результате всех возможных комбинаций того, как мы выбираем эти числа из скобок.

Как только вы смогли это увидеть, перемножение бесконечного числа скобок больше не проблема.

В ответе будет сумма — разумеется, бесконечная — членов, каждый из которых получен путем выбора одного числа из каждой скобки и перемножения всего, что выбрали. Если сложить результаты всех таких возможных выборов, то и получится ответ. Однако в том виде, как эта процедура описана, она все еще выглядит несколько устрашающей. Согласно сказанному, каждый член в нашей бесконечной сумме есть бесконечное произведение. Да, так оно и есть, но, поскольку каждая скобка в правой части выражения (15.1) содержит 1, наша жизнь делается приятнее за счет того, что мы будем выбирать бесконечное число единиц и лишь конечное число не-единиц. В конце концов, поскольку каждый не-единичный член в каждой скобке есть число между - 1/ 2и 0, перемножение бесконечно большого числа таких членов дает результат, величина которого (я имею в виду — без учета знака) заведомо не больше, чем ( 1/ 2) , а это равно нулю! Теперь смотрите, как я построю бесконечную сумму.

Первый член в бесконечной сумме: берем 1 из каждой скобки. Это даст бесконечное произведение 1x1x1x1x1x…, значение которого есть, конечно, просто 1.

Второй член: берем 1 из всех скобок, кроме первой. Из первой же возьмем

. Это даст бесконечное произведение
x1x1x1x1x…, которое равно просто
.

Третий член: берем 1 из каждой скобки, кроме второй. А из второй возьмем

. Это даст бесконечное произведение 1x
x1x1x1x…, что равно просто
.

Четвертый член… Я думаю, понятно, что, если брать 1 из каждой скобки, кроме n– й, мы получим слагаемое равное

, где p — n– е простое число. Итак, получилась бесконечная сумма вида (15.3):

Но это еще не конец. При перемножении скобок возникает сумма всех возможных членов,получаемых взятием одного числа из каждой скобки. Предположим, мы выбрали

из первой скобки,
из второй и 1 из всех остальных. Это дает
x
x1x1x1x…, что равно
. Похожие вещи мы получим из каждой возможной пары выборов не-единиц. Выбирая из третьей скобки
и
из шестой, а единицы из всех остальных, получаем член, равный
.

(Заметим, что здесь работают два простых правила арифметики. Одно — это правило знаков, гласящее, что минус умножить на минус дает плюс, а другое — 7-е правило действий со степенями, согласно которому (xxy) n= x nxy n.)

Так что наряду с членами, уже собранными в выражении (15.3) , имеется новый набор, каждый член в котором происходит из каждой пары простых чисел, как 5 и 13, и которые все входят со знаком плюс. Таким образом, выражение (15.3) разрослось до такого:

где каждое число во второй строке есть произведение двух различных простых.

А ведь мы едва начали нашу деятельность по перемножению бесконечного числа скобок. Следующий шаг состоит в том, чтобы перебрать все возможные способы выбрать

три не-единицы (при всех остальных единицах). Например, 1x
x1x1x
x
x1x1x…, из чего возникает
.Теперь результат разрастается до

где каждое число в третьей строке есть произведение трех различных простых.

В предположении, что мы продолжаем так поступать, а также в предположении, что получающиеся члены можно переставлять, как мы пожелаем, выражение (15.1) превращается в следующее (15.4):

Натуральные числа в правой части — это… что? Это заведомо не все натуральные числа: 4, 8, 9 и 12 там отсутствуют. Но и не простые: присутствующие там 6, 10, 14 и 15 не являются простыми. Если оглянуться на процесс перемножения этого бесконечного количества скобок, то станет ясно, что ответ такой: каждое натуральное число, которое равно произведению нечетного числа (включая 1) различных простых, взятое со знаком минус, и, кроме того, каждое натуральное число, которое равно произведению четного числа различных простых, взятое со знаком плюс. Отсутствуют такие числа, как 4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, … — т.е. числа, которые делятся на квадрат некоторого простого.

Поприветствуем функцию Мебиуса! Она названа по имени немецкого математика и астронома Августа Фердинанда Мебиуса (1790–1868). [137]

Рисунок 15.4.Лента Мебиуса и муравей на ней.

В наше время ее общепринято обозначать греческой буквой , что произносится как «мю» — греческий эквивалент буквы «м». [138] Приведем полное определение функции Мебиуса.

137

Мебиуса более всего помнят за ленту (лист) Мебиуса, показанную на рисунке 15.4, которую сам он придумал в 1858 г. (Ранее она была описана другим математиком, Йоханом Листингом, также в 1858 г. Листинг опубликовал свое открытие, а Мебиус — нет, так что, согласно академическим правилам, ее следовало бы называть «лентой Листинга». Мир устроен несправедливо.) Чтобы сделать ленту Мебиуса, надо взять полоску бумаги за концы (один конец в правой руке, другой — в левой), перекрутить один из них на 180 градусов и склеить их друг с другом. Получится односторонняя поверхность — муравей может переползти из любой точки на полосе в любую другую точку, не перелезая при этом через край.

138

Если вам кажется, что выбор буквы, указывающей на свое собственное имя, было проявлением тщеславия со стороны Мебиуса, то сообщу вам, что сам Мебиус при первом описании своей функции в 1832 г. не использовал буквы ; виновник появления — Франц Мертенс, который ввел ее в 1874 г., причем в честь Мебиуса, к тому времени уже скончавшегося, а не в свою.

• Ее область определения есть N, то есть все натуральные числа 1, 2, 3, 4, 5, ….

• (1) = 1.

• ( n) = 0, если среди делителей числа nесть квадрат.

• ( n) = -1, если число nпростое или является произведением нечетного числа различных простых чисел.

• ( n) = 1, если число nявляется произведением четного числа различных простых чисел.

Такое определение функции может показаться вам страшно громоздким. Однако функция Мебиуса приносит колоссальную пользу в теории чисел и далее в этой книге будет играть ведущую роль. В качестве примера приносимой ею пользы заметим, что все трудоемкие алгебраические действия, через которые нам пришлось продираться, сводятся к изящному выражению (15.5):

V.

B истории Гипотезы Римана наряду с самой функцией (n)не меньшую роль играет ее нарастающее значение, т.е. результат сложения (1) + (2) + (3) + … + ( k) для некоторого числа k. Так определяется «функция Мертенса» М(k). Ее первые 10 значений (т.е. значения при k= 1, 2, 3, …, 10) равны 1, 0, -1, -1, -2, -1, -2, -2, -2, -1. Функция M(k)весьма нерегулярна — она совершает колебания в обе стороны вокруг нулевого значения в стиле, который математики называют «случайными блужданиями». Для аргументов, равных 1000, 2000, …, 10 000, ее значения равны 2, 5, -6, -9, 2, 0, -25, -1, 1, -23. Для аргументов миллион, 2 миллиона, …, 10 миллионов ее значения равны 212, -247, 107, 192, -709, 257, -184, -189, -340, 1037. Если не обращать внимания на знаки, то видно, что величина функции M(k)возрастает, но помимо этого никакой ясной картины не просматривается.

Поделиться:
Популярные книги

Хозяин Теней 3

Петров Максим Николаевич
3. Безбожник
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Хозяин Теней 3

Кротовский, не начинайте

Парсиев Дмитрий
2. РОС: Изнанка Империи
Фантастика:
городское фэнтези
попаданцы
альтернативная история
5.00
рейтинг книги
Кротовский, не начинайте

Первый среди равных. Книга V

Бор Жорж
5. Первый среди Равных
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Первый среди равных. Книга V

Барон не признает правила

Ренгач Евгений
12. Закон сильного
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Барон не признает правила

Один на миллион. Трилогия

Земляной Андрей Борисович
Один на миллион
Фантастика:
боевая фантастика
8.95
рейтинг книги
Один на миллион. Трилогия

На границе империй. Том 10. Часть 7

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 7

Наследник павшего дома. Том I

Вайс Александр
1. Расколотый мир
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Наследник павшего дома. Том I

Сержант. Назад в СССР. Книга 4

Гаусс Максим
4. Второй шанс
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Сержант. Назад в СССР. Книга 4

Лейб-хирург

Дроздов Анатолий Федорович
2. Зауряд-врач
Фантастика:
альтернативная история
7.34
рейтинг книги
Лейб-хирург

Измена. Право на семью

Арская Арина
Любовные романы:
современные любовные романы
5.20
рейтинг книги
Измена. Право на семью

Неверный

Тоцка Тала
Любовные романы:
современные любовные романы
5.50
рейтинг книги
Неверный

Ищу жену для своего мужа

Кат Зозо
Любовные романы:
любовно-фантастические романы
6.17
рейтинг книги
Ищу жену для своего мужа

Газлайтер. Том 10

Володин Григорий
10. История Телепата
Фантастика:
боевая фантастика
5.00
рейтинг книги
Газлайтер. Том 10

Плеяда

Суконкин Алексей
Проза:
военная проза
русская классическая проза
5.00
рейтинг книги
Плеяда