Чтение онлайн

на главную - закладки

Жанры

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Шрифт:

Еще в 1971 году физик Мартин Гутцвиллер [181] нашел способ связать хаотические системы в классическом масштабе с подобными системами в квантовом мире путем взятия предела в уравнениях квантовой механики, когда квантовый множитель — постоянная Планка — стремится к нулю. Таким образом получается «квазиклассическая» система, а периодические орбиты, лежащие в основе классических хаотических систем, отвечают собственным значениям оператора, задающего эту систему.

181

Лауреат медали имени Макса Планка 2003 г. за развитие квантовой теории металлов. (Примеч. перев.)

Майкл Берри показал, что если риманов оператор существует, то он моделирует одну из этих квазиклассических хаотических систем, причем его собственные значения — мнимые части нулей дзета-функции — являются уровнями энергии этой системы. Периодические орбиты в аналогичной классической хаотической системе отвечали бы… — простым числам! (Строго говоря, их логарифмам). Кроме того, он показал, что у этой квазиклассической системы не было бы свойства «симметрии относительно обращения времени» — другими словами, если представить себе, что

все скорости всех частиц в системе мгновенно и одновременно заменяются на противоположные, то система невернется к своему начальному состоянию. (Хаотические системы могут допускать, а могут и не допускать обращение времени. Те, которые его допускают, моделируются не операторами типа операторов ГУА, а операторами другого вида, принадлежащими другому ансамблю — ГОА, т.е. гауссову ортогональному ансамблю.) Работа Берри (в значительной ее части — в сотрудничестве с его коллегой из Бристоля Джонатаном Китингом) представляет собой тонкое и глубокое исследование. Например, он очень детально проанализировал формулу Римана-Зигеля с целью глубоко проникнуть в природу нулей и их влияния друг на друга на различных отрезках их существования. На момент написания книги он пока не отождествил динамическую систему, отвечающую оператору Римана, но если такой оператор существует, то благодаря его работе мы распознаем его немедленно, как только он попадется нам на глаза. {A5}

IV.

Альтернативный подход развил другой исследователь — Ален Конн, профессор математики из парижского Коллеж де Франс. Вместо того чтобы выискивать, оператор какого типа мог бы иметь своими собственными значениями нули дзета-функции, он просто взял и построил такой оператор.

Это потребовало немалой ловкости. Оператор необходимо снабдить чем-то, на что он может действовать. Операторы того типа, о которых говорилось выше, действуют на пространствах.Плоское двумерное пространство может послужить иллюстрацией общего принципа, если в качестве наглядного пособия взять лист миллиметровки, хотя при этом и придется представлять себе, что он продолжается по всем направлениям до бесконечности. Предположим, что мы повернули это пространство на 30 градусов против часовой стрелки, так что каждая точка в нем тем самым переместилась в некоторую другую точку (за единственным исключением точки, вокруг которой происходит вращение, — она-то остается на месте). Это вращение дает пример оператора.Характеристический многочлен этого конкретного оператора имеет вид x 2– 3 x+ 1 [182] , а собственные значения равны 1/ 23 + 1/ 2 iи 1/ 23 - 1/ 2 i.

182

Чтобы у читателя не возникало ощущение систематического надувательства, стоит, возможно, заметить, что, например, 3 в характеристическом многочлене — это котангенс 30 градусов, т.е. угла поворота. (Примеч. перев.)

При желании для описания каждой точки в нашем пространстве можно ввести систему координат: для этого надо провести горизонтальную ось xи вертикальную ось y, пересекающиеся в точке вращения, и, как обычно, отложить расстояния в дюймах или сантиметрах вдоль этих осей. Тогда можно заметить, что наш оператор вращения отправляет точку (x, y)в новую точку с другими координатами — которые в действительности равны ( 1/ 23 x+ 1/ 2 y, 1/ 23 x1/ 2 y). Для оператора самого по себе это, впрочем, большого значения не имеет — оператор существует и отправляет точки на плоскости в новые точки независимо от какой бы то ни было системы координат. Вращение остается вращением, даже если мы забыли нарисовать пару осей.

Операторы, применяемые в математической физике, разумеется, действуют на значительно более сложных пространствах, чем в нашем примере. Эти пространства не двумерны и даже не трехмерны (подобно обычному пространству, которое окружает нас в быту), и даже не четырехмерны (как пространство-время, возникающее в теории относительности). Они представляют собой абстрактные математические пространства с бесконечнымчислом измерений. Каждая точка в таком пространстве является функцией. Операторы преобразуют функции в другие функции, а на языке пространств и точек это выражается как отображение одной точки в другую.

Чтобы получить первое представление о том, каким образом функцию можно отождествить с точкой в пространстве, рассмотрим один простой класс функций — квадратичные многочлены p + qx + rx 2. Семейство всех таких многочленов можно представить в трехмерном пространстве, если многочлену p + qx + rx 2поставить в соответствие точку с координатами (p, q, r).В том же духе, четырехмерное пространство будет моделировать кубические многочлены; пятимерное пространство — многочлены четвертой степени и т.п. Далее, поскольку некоторые функции можно записать в виде рядов, а ряд выглядит как бесконечный многочлен (например, e xзаписывается в виде 1 + x+ 1/ 2 x 2+ 1/ 6 x 3+ 1/ 24 х 4+ …), становится понятно, как бесконечное число измерений может пригодиться при описании функций. На этом языке e xстанет

точкой в пространстве, заданной бесконечным набором координат (1, 1, 1/ 2, 1/ 6, 1/ 24, …).

Функции, с которыми имеет дело квантовая механика, — это волновые функции, которые определяют вероятность того, что частицы, составляющие описываемую систему, занимают определенные положения и имеют определенные скорости в данный момент времени. Другими словами, каждая точка в пространстве функций представляет некоторое состояние системы. Используемые в квантовой механике операторы кодируют наблюдаемые свойства системы; наибольшую известность имеет оператор Гамильтона, который кодирует энергию системы. Собственные значения оператора Гамильтона представляют собой уровни энергии в системе. Далее, каждое собственное значение определенным образом связывается с вполне определенной точкой (т.е. функцией) в бесконечномерном пространстве, называемой собственной функцией; она служит для представления состояния системы при заданном уровне энергии. Эти собственные функции играют ключевую роль при описании состояний системы. Всякое возможное состояние системы, любое ее физическое проявление дается некоторой линейной комбинацией собственных функций, в точности так же, как всякую точку в трехмерном пространстве можно записать в виде (x, y, z),т.е. в виде линейной комбинации точек (1, 0, 0), (0, 1, 0) и (0, 0, 1).

Ален Конн построил довольно своеобразное пространство, на котором предстояло действовать его риманову оператору. Простые числа встроены в это пространство некоторым способом, заимствованным из понятий алгебраической теории чисел. Дадим краткий обзор работы Конна.

V.

B основе построения всей классической физики лежат вещественные числа, такие как 22,45915771836…; поскольку такие числа не имеют замкнутого вида, требуется бесконечная последовательность десятичных разрядов, чтобы теоретически достичь полной точности. Реальные физические измерения, однако, носят приближенный характер, давая что-то вроде 22,459. Это рациональное число, равное 22 459/ 1000. Все, что есть в физическом эксперименте, можно, таким образом, выразить с помощью рациональных чисел — элементов из Q. Чтобы перейти от мира эксперимента к миру теории, надо пополнитьполе Q(см. главу 11.v). Другими словами, требуется его расширить таким образом, чтобы для всякой имеющей предел бесконечной последовательности чисел из Qэтот предел лежал бы или в самом Q, или в поле-расширении. Обычный и естественный способ такого пополнения приводит к вещественным числам Rи комплексным числам С.

Однако в алгебраической теории чисел имеются и другие возможности для пополнения Q. В 1897 году прусский математик Курт Хензель [183] , работая над определенной задачей в теории алгебраических полей, ввел целое новое семейство объектов, подобных полю чисел вида а + b2, которое мы рассматривали в главе 17.ii. Эти объекты называются p-адическими числами. Для каждого простого числа pимеется по одному из этих экзотических созданий, содержащих бесконечно много элементов. Кирпичики, из которых строится такое поле, — это обсуждавшиеся в главе 17.ii «циферблатные» кольца размера p, p 2, p 3, p 4и т.д. В моих обозначениях это кольца CLOCK p , CLOCK p2, CLOCK p3, …. Например, поле 7-адических чисел построено из CLOCK 7, CLOCK 49, CLOCK 343, CLOCK 2401, …. Помните приводившуюся ранее иллюстрацию того, как конечное поле можно использовать для построения бесконечного поля? Так вот, здесь используется бесконечное число конечных колец для построения нового бесконечного поля!

183

Курт Хензель(Гензель) (1861-1941) — еще один представитель семейного древа Мендельсонов. Его бабушка Фанни была сестрой композитора, а его отец Себастьян Хензель — ее единственным сыном. Себастьяну было 16 лет, когда Фанни умерла, а его отправили жить с семейством Дирихле (глава 6.vii), где он и оставался до своей женитьбы. Большая часть карьеры Курта прошла в Магдебургском университете в центральной Германии; он вышел на пенсию в 1930 г. Несмотря на свое еврейское происхождение, он, по-видимому, не пострадал при нацистах. «В целом Мендельсоны не испытали на себе весь ужас нюрнбергских антисемитских законов, поскольку большинство представителей семейства были крещены несколько поколений назад» ( Купферберг X.Мендельсоны). В 1942 г. невестка Хензеля принесла его обширную математическую библиотеку в дар только что подвергшемуся нацификации Страсбургскому университету в оккупированном Эльзасе — университет заново открылся в ноябре того года под немецкой вывеской Reichsuniversit"at Strassburg (сейчас он снова во Франции). (Курт Хензель выступил также соавтором известного конспекта лекций Т. Моммзена о римских императорах; в течение двух зимних и одного летнего семестра эти лекции были «оазисом души» Себастьяна Хензеля, которому «было трудно примириться с тем, что Моммзен не написал истории римских императоров». — Примеч. перев.)

Поле p-адических чисел обозначается символом Q p . Таким образом, имеются поле Q 2, поле Q 3, поле Q 5, поле Q 7, поле Q 11и т.д. Каждое из них — полное поле: Q 2есть поле 2-адических чисел, Q 3есть поле 3-адических чисел и т.д.

Поделиться:
Популярные книги

Газлайтер. Том 17

Володин Григорий Григорьевич
17. История Телепата
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Газлайтер. Том 17

Темный Лекарь 5

Токсик Саша
5. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 5

Предложение джентльмена

Куин Джулия
3. Бриджертоны
Любовные романы:
исторические любовные романы
8.90
рейтинг книги
Предложение джентльмена

Санек 4

Седой Василий
4. Санек
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Санек 4

Имперский Курьер. Том 3

Бо Вова
3. Запечатанный мир
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Имперский Курьер. Том 3

Паладин из прошлого тысячелетия

Еслер Андрей
1. Соприкосновение миров
Фантастика:
боевая фантастика
попаданцы
6.25
рейтинг книги
Паладин из прошлого тысячелетия

Попаданка в академии драконов 2

Свадьбина Любовь
2. Попаданка в академии драконов
Любовные романы:
любовно-фантастические романы
6.95
рейтинг книги
Попаданка в академии драконов 2

Кто ты, моя королева

Островская Ольга
Любовные романы:
любовно-фантастические романы
7.67
рейтинг книги
Кто ты, моя королева

Мастер темных Арканов

Карелин Сергей Витальевич
1. Мастер темных арканов
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Мастер темных Арканов

Мама из другого мира. Дела семейные и не только

Рыжая Ехидна
4. Королевский приют имени графа Тадеуса Оберона
Любовные романы:
любовно-фантастические романы
9.34
рейтинг книги
Мама из другого мира. Дела семейные и не только

Зубных дел мастер

Дроздов Анатолий Федорович
1. Зубных дел мастер
Фантастика:
научная фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Зубных дел мастер

Ротмистр Гордеев 2

Дашко Дмитрий
2. Ротмистр Гордеев
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Ротмистр Гордеев 2

Шайтан Иван 2

Тен Эдуард
2. Шайтан Иван
Фантастика:
боевая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Шайтан Иван 2

Я тебя верну

Вечная Ольга
2. Сага о подсолнухах
Любовные романы:
современные любовные романы
эро литература
5.50
рейтинг книги
Я тебя верну