Чтение онлайн

на главную

Жанры

Сборник задач по математике с решениями для поступающих в вузы

Ваховский Евгений Борисович

Шрифт:

Глава 3

Геометрические задачи в пространстве

3.1. На луче, перпендикулярном к MN, возьмем произвольную точку А (рис. P.3.1). Спроецируем OA на плоскость P, а полученный отрезок OB на второй из данных лучей. Треугольник АСО прямоугольный (по теореме о трех перпендикулярах).

Косинус искомого угла АОС равен ОС/OA.

Используя построенным треугольники, можно выразить ОС через OA:

ОС = OB sin = OA cos sin .

Ответ. arccos (cos sin ).

3.2. Спроецируем данный треугольник ABC на плоскость P (рис. P.3.2) и построим угол CED, равный x, между плоскостью треугольника и плоскостью P. Введем в рассмотрение линейный элемент CD = а.

Тогда

Так как СЕ — высота в треугольнике ABC, опущенная на гипотенузу, то (из сравнения площадей) имеем

Подставляя вычисленные раньше значения AC, BC и СЕ, получим 

откуда

Так как угол x по построению всегда острый, то он определяется однозначно.

Ответ.

3.3. Из некоторой точки В1 на стороне угла опустим перпендикуляр B1B на плоскость P (рис. P.3.3). Через В1 проведем плоскость, параллельную плоскости P. Она пересечет другую сторону угла в некоторой точке А1. Через B1B и А проведем плоскость, которая будет перпендикулярна к плоскости P.

Отрезки AA1 и ВВ1 равны. Обозначим АА1 = ВВ1 = а. Теперь можно вычислить все стороны треугольника ОАВ и воспользоваться теоремой косинусов, чтобы найти угол x.

Стороны OA и OB вычислить просто:

OA = а ctg , OB = а ctg .

Сторона AB равна А1В1 в треугольнике ОА1В1. Так как

то по теореме косинусов

Воспользуемся

теоремой косинусов еще раз, но уже для треугольника ОАВ:

АВ^2 = ОА^2 + ОВ^2 - 2ОА · OB cos x.

Подставляя сюда найденные выше выражения для OA, OB и AB, получим уравнение относительно cos x. Решая его, после несложных тригонометрических преобразований найдем cos x.

Ответ.

3.4. Построим плоскость P, перпендикулярную к прямой а, и спроецируем на нее прямые b, с и d. Искомая прямая параллельна а, т. е. должна спроецироваться в точку О на плоскости P. Точка О будет одинаково удалена от проекций b1, с1 и d1 трех этих прямых.

Поскольку прямые а, b, с и d скрещивающиеся, ни одна из прямых b, с и d не может спроецироваться в точку на плоскости P, так как иначе она оказалась бы параллельной прямой а.

Проекции никаких двух прямых из b, с, d не сольются, так как это означало бы, что эти две прямые лежат в одной плоскости. Поэтому проекции b1, с1 и d1 могут расположиться на плоскости P лишь одним из четырех способов (рис. P.3.4, а).

B первом случае (проекции образуют треугольник) мы получим четыре точки, равноотстоящие от b1, с1 и d1. Это — центры вписанной и вневписанных окружностей. Проводя через каждую из них прямую, перпендикулярную к плоскости P, придем к четырем решениям.

Во втором случае (две из проекций параллельны) получим два решения (рис. P.3.4, б).

B третьем случае (проекции пересекаются в одной точке) будет единственное решение — прямая, проходящая через общую для трех проекций точку.

B последнем случае (проекции b1, с1 и d1 параллельны) решения нет.

Так как все возможные случаи исчерпаны, то задача решена.

3.5. Проведем CD параллельно AB (рис. P.3.5).

Угол SCD искомый. Построим CF AB и AD AB. B прямоугольнике AFCD имеем CD = АF = а/2ADCF = . Из треугольника SAD находим

 Тангенс угла SCD равен SD : CD.

Поделиться:
Популярные книги

Город Богов 3

Парсиев Дмитрий
3. Профсоюз водителей грузовых драконов
Фантастика:
юмористическое фэнтези
городское фэнтези
попаданцы
5.00
рейтинг книги
Город Богов 3

Ваше Сиятельство 2

Моури Эрли
2. Ваше Сиятельство
Фантастика:
фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Ваше Сиятельство 2

Начальник милиции 2

Дамиров Рафаэль
2. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции 2

Граф

Ланцов Михаил Алексеевич
6. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Граф

Мастер темных Арканов

Карелин Сергей Витальевич
1. Мастер темных арканов
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Мастер темных Арканов

Искра Силы

Шабынин Александр
1. Мир Бессмертных
Фантастика:
городское фэнтези
историческое фэнтези
сказочная фантастика
фэнтези
эпическая фантастика
5.00
рейтинг книги
Искра Силы

Имя нам Легион. Том 9

Дорничев Дмитрий
9. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 9

Душелов. Том 2

Faded Emory
2. Внутренние демоны
Фантастика:
фэнтези
боевая фантастика
аниме
5.00
рейтинг книги
Душелов. Том 2

Темный Лекарь

Токсик Саша
1. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь

Ненужная дочь

Брай Марьяна
Любовные романы:
любовно-фантастические романы
6.25
рейтинг книги
Ненужная дочь

Корсар

Русич Антон
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
6.29
рейтинг книги
Корсар

Мастер 3

Чащин Валерий
3. Мастер
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 3

На границе империй. Том 8. Часть 2

INDIGO
13. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 8. Часть 2

Курсант: назад в СССР

Дамиров Рафаэль
1. Курсант
Фантастика:
попаданцы
альтернативная история
7.33
рейтинг книги
Курсант: назад в СССР