Чтение онлайн

на главную - закладки

Жанры

Сборник задач по математике с решениями для поступающих в вузы

Ваховский Евгений Борисович

Шрифт:

Задача имеет единственное решение, если точки А и B лежат по одну сторону от данной прямой, и не имеет решений в остальных случаях.

2.17. Пусть прямая, проведенная через точки А и B, пересекает прямую PQ в точке С (рис. P.2.17), и пусть О — центр искомой окружности. Тогда СА · СВ = CD^2. Отрезки СА и СВ известны, отрезок CD — их среднее геометрическое и строится стандартным образом.

Если точки А

и B лежат по одну сторону от PQ, то задача имеет два решения (отрезок CD можно отложить вправо и влево от точки С). Если AB и PQ параллельны, то задача имеет единственное решение, которое очевидно, но не может быть получено описанным способом. Когда точки А и P лежат по разные стороны PQ, задача не имеет решения.

2.18. Отрезки МВ и МА или их продолжения пересекают данную окружность в точках С и D (рис. P.2.18), которые являются основаниями высот треугольника АМВ, опущенных из его вершин А и B. Отрезок МР, проведенный через точку P пересечения AC и BD, будет искомым перпендикуляром.

Задача имеет решение, если точка M не лежит на прямой AB.

2.19. Предыдущая задача позволяет построить некоторый перпендикуляр к диаметру AB, пересекающий данную окружность в точках, которые мы обозначим буквами С и D (рис. P.2.19). Проведем прямую СМ; она пересечет диаметр AB (или его продолжение) в точке E. Проведем ED. B пересечении ED и данной окружности получим точку FMF — искомый перпендикуляр.

2.20. Построим точку А1 симметричную точке А относительно прямой l (рис. P.2.20). Для любой точки С на прямой l (в силу неравенства треугольника) справедливо соотношение

|ACBC| = |А1СBC| <= А1В.

Величина |А1СBC| будет меняться в зависимости от положения точки С, и станет наибольшей, когда точка С займет положение С1 (на пересечении прямых А1B и l). Именно для этой точки треугольник СА1В вырождается в отрезок С1В, а неравенство треугольника превращается в равенство: |А1СBC| = А1B. Из построения следует, что точка С единственная (если бы мы отражали от прямой l точку B, то пришли бы к той же точке С).

2.21. Две противоположные вершины искомого квадрата лежат, во-первых, на внешних полуокружностях, построенных на сторонах данного

четырехугольника (рис. P.2.21), и, во-вторых, на диагонали квадрата, которая пересекает внутренние полуокружности в точках E и F, таких, что АFFBDE = EC = 45°.

После проведенного анализа построение очевидно.

2.22. Выберем на глаз отрезок длины 1. Построим прямоугольный треугольник с катетами 1 и 1. Гипотенуза его равна 2. Далее возьмем катеты 1 и 2. Получим гипотенузу 3. Если же катеты равны 3 и 2, то гипотенуза равна 7. На сторонах острого угла А (для удобства) отложим AB = 1, АВ1 = 7, AC = 7 (рис. P.2.22).

Соединим B и С, через В1 проведем прямую, параллельную BC. Она пересечет AC в точке С1. Из подобия треугольников ABC и АВ1С1 имеем AB : АВ1 = AC : АС1. Отсюда

 Однако это 7 выбранных нами единиц, а не реальный отрезок длины 7, данный в условии задачи. Отложим АС2 = 7. Это уже данный в условии отрезок. И проведем С2В2 || СВ. Отрезок АВ2 = 7.

2.23. Так как длина искомого отрезка есть

а длина данного отрезка равна а, то рассмотрим только такие значения а, что одновременно

Решение этой системы есть два интервала: 0 < а < 1 и а > 3.

Пусть 0 < а < 1. Тогда удобнее записать длину искомого отрезка так:

На одном луче угла отложим отрезки OA = 2 + а и OB = 3 + а, а на другом луче — отрезок ОС = 3 - а (рис. P.2.23, а). Соединим А и С, проведем BD || AC. Тогда

Осталось построить отрезок, длина которого равна OD/1 - а. Для этого отложим на одном луче угла отрезки OD и ОЕ = 1 - а, а на другом луче отрезок OK = 1 (рис. P.2.23, б). Проведем DL || EK. Отрезок OL имеет искомую длину:

Осталось рассмотреть случай а > 3. Решение отличается только тем, что вместо отрезков длины 3 - а и 1 - а придется рассматривать отрезки длины а - 3 и а - 1.

Поделиться:
Популярные книги

Город Богов 3

Парсиев Дмитрий
3. Профсоюз водителей грузовых драконов
Фантастика:
юмористическое фэнтези
городское фэнтези
попаданцы
5.00
рейтинг книги
Город Богов 3

Ваше Сиятельство 2

Моури Эрли
2. Ваше Сиятельство
Фантастика:
фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Ваше Сиятельство 2

Начальник милиции 2

Дамиров Рафаэль
2. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции 2

Граф

Ланцов Михаил Алексеевич
6. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Граф

Мастер темных Арканов

Карелин Сергей Витальевич
1. Мастер темных арканов
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Мастер темных Арканов

Искра Силы

Шабынин Александр
1. Мир Бессмертных
Фантастика:
городское фэнтези
историческое фэнтези
сказочная фантастика
фэнтези
эпическая фантастика
5.00
рейтинг книги
Искра Силы

Имя нам Легион. Том 9

Дорничев Дмитрий
9. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 9

Душелов. Том 2

Faded Emory
2. Внутренние демоны
Фантастика:
фэнтези
боевая фантастика
аниме
5.00
рейтинг книги
Душелов. Том 2

Темный Лекарь

Токсик Саша
1. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь

Ненужная дочь

Брай Марьяна
Любовные романы:
любовно-фантастические романы
6.25
рейтинг книги
Ненужная дочь

Корсар

Русич Антон
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
6.29
рейтинг книги
Корсар

Мастер 3

Чащин Валерий
3. Мастер
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 3

На границе империй. Том 8. Часть 2

INDIGO
13. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 8. Часть 2

Курсант: назад в СССР

Дамиров Рафаэль
1. Курсант
Фантастика:
попаданцы
альтернативная история
7.33
рейтинг книги
Курсант: назад в СССР