"Теорія та методика навчання математики, фізики, інформатики. Том-1"
Шрифт:
7) не дописують, що ряд збігається саме абсолютно;
8) неправильно роблять висновок, при якому qв ознаках Д’Аламбера та Коші ряд є збіжним.
Випадковими помилками є описки типу: “Область збіжності ряду – інтервал (–1; –9]”.
Для групи ОА типовими є помилки 6), 7), 8), а випадковими є помилки типу “”, інколи студенти не впізнавали другу чудову границю .
При вивченні розділу “Невизначений інтеграл” групою ОА-2 типовими помилками є:
1) неправильне записування знаменника дробу 3-го типу при інтегруванні дробово-раціональних виразів;
2) неправильне застосування табличних інтегралів;
3) подавання інтегралу добутку як добутку інтегралів;
4) не враховується знак “мінус” при пошуку площі
Частою випадковою помилкою є недописування Cпри знаходженні невизначених інтегралів.
На нашу думку, основними недоліками, які заважають найбільш продуктивному навчанню, є недостатня кількість годин практичних занять і відсутність годин на індивідуальні заняття, слабкий рівень шкільної підготовки, неповна забезпеченість студентів навчальною літературою.
Для подолання труднощів пропонується врахування і можливе усунення вище перерахованих факторів, а також використання умовного поділу студентів на групи за рівнем знань, більш індивідуальна робота саме з цими групами: давати можливість і сильним рухатись при вивченні з властивою їм швидкістю, і слабким дотягуватись до середнього рівня. Наприклад, на початку навчання першою парою можна провести контрольну роботу для заміру залишкових шкільних знань. За її результатами студенти умовно поділяються на групи – слабкі, середні, сильні. На другій парі сильним і середнім на картках даються індивідуальні завдання, що відповідають їхньому рівню підготовки, а викладач працює зі слабкими студентами. В процесі роботи з’ясовується найбільш незрозумілі питання, робиться крок до “підтягування” слабких студентів до середнього рівня. На наступній парі сильні знову працюють індивідуально, викладач працює з “середніми”, а слабкі пишуть контрольну роботу свого рівня. Далі чергуються методики другої та четвертої пари, а на останньому занятті проводиться контрольна робота для всіх (з урахуванням рівня). Крім того, слабким пропонується протягом семестру розв’язати 30 стандартних задач, деякі з яких обов’язково входять в їхню останню контрольну.
Важливе місце відводиться підготовці викладачем студента до інсайту, “ага-розв’язку”. Необхідно давати можливість розкритись здібностям всіх студентів в групі без виключення.
ПРОГРАММА ЧИСЛЕННОГО РАСЧЕТА ФУНКЦИИ
ГРИНА ДЛЯ БИСПИНОРНОГО УРАВНЕНИЯ ДИРАКА
Л.А. Витавецкая
г. Одесса, Одесский государственный экологический
университет
Функция Грина (ФГ) играет важную роль в аппарате математической физики. Ее построение в аналитическом или численном виде является ключевым моментом при решении целого ряда задач как нерелятивистской, так и релятивистской квантовой теории поля [1-4]. Целью нашей работы является построение компактного численного алгоритма вычисления функции Грина релятивистского биспинорного уравнения Дирака с центральным несингулярным потенциалом и комплексной энергией и его реализация в виде комплекса программ с использованием метода Иванова-Ивановой (см. напр. [3]).
Искомая ФГ определяется как решение неоднородного уравнения Дирака (УД):
(1)
где – Дираковский гамильтониан [2]:
(2)
где – энергетический параметр, V( r) – центральный потенциал. В теории стационарных состояний – действительное число 0< <. Математический смысл -энергия частицы в виртуальном состоянии. В задачах рассеяния возникает необходимость рассматривать ФГ с комплексным параметром [3, 4]. Традиционный подход вычисления ФГ УД с центральным потенциалом связан с выделением радиальной и угловой частей. Для радиальной части используется парциальное разложение, записанное
После выделения радиальной части ФГ ключевой становится задача решения неоднородного радиального УД с широким интервалом изменения параметра . Радиальное уравнение в матричном виде
Здесь – квантовое число Дирака. Для угловых частей известны точные аналитические выражения, в которых учтено суммирование по моментным проекциям виртуальных состояний [2]. Радиальную часть ФГ можно стандартно выразить в виде комбинации двух фундаментальных решений однородного уравнения Дирака. С помощью фундаментальных решений элементы G ij ФГ представляются в виде:
Здесь fи g– большая и малая компоненты функции Дирака, N– нормировочный множитель. Знак “~” применяется для обозначения второго фундаментального решения. Для конкретизации задачи предполагаем, что частица движется в сферически симметричном кулоновском потенциале. В таком приближении ее состояние определяется значениями главного квантового числа, полным моментом и четностью. Соответствующие биспиноры имеют стандартный вид [2]:
Здесь – шаровой спинор, g( r) и f( r) – радиальные функции Дирака, которые удовлетворяют системе уравнений:
Вид радиальных функций, естественно, зависит от вида потенциала V( r). Для регулярного при r– >0 V( r), при r– > переходящего в чисто кулоновский, при каждом значении , aeсуществуют решения двух типов (см. [3] и ссылки там):
а) регулярное при r– >0
ae<0 : ae>0
б) сингулярное при r– >0
ae<0 ae>0
Вычислительные трудности всей задачи связаны в основном с вычислением второго фундаментального решения, для чего использован метод Иванова-Ивановой [3]. Вся вычислительная процедура сведена к решению одной системы обыкновенных ДУ (для численного интегрирования применяется схема Рунге-Кута) и реализована в виде комплекса программ (для Fоrtran Power Station 4.0) для РС Pentium II.
Литература
Марчук Г.И. Методы вычислительной математики. – М., 1989.
Ахиезер А.И., Берестецкий В.Б. Квантовая электродинамика. – М., 1979.
Ivanov L.N., Ivanova E.P., Knight L. // Phys. Rev. A. – 1993. – V.48. – P. 436.
Glushkov A.V., Ivanov L.N. // Phys. Lett. A. – 1992. – V. 170. – P. 33.
НОВІ МЕТОДИ СУЧАСНОЇ МАТЕМАТИЧНОЇ ФІЗИКИ
І ОБЧИСЛЮВАЛЬНОЇ МАТЕМАТИКИ: