Чтение онлайн

на главную - закладки

Жанры

Трактат об электричестве и магнетизме. Том 2.
Шрифт:

Для того чтобы получить уравнения движения среды, мы должны выразить её кинетическую энергию через скорость её частей, составляющими которой являются , , . Таким образом, мы интегрируем по частям и находим

2C

(++)

dx

dy

dz

=

C

(+)

dy

dz

+

+

C

(+)

dz

dx

+

C

(-)

dx

dy

+

+

2C

d

dy

d

dz

+

d

dz

d

dx

+

+

d

dx

d

dy

dx

dy

dz

.

(4)

Двойные

интегралы относятся к ограничивающей поверхности, которую можно предполагать расположенной на бесконечном расстоянии. Поэтому мы можем при исследовании того, что имеет место внутри среды, ограничиться рассмотрением тройного интеграла.

825. Часть кинетической энергии в единице объёма, выражаемая этим тройным интегралом, может быть записана в виде

4C

(u+v+w)

,

(5)

где u, v, w являются составляющими электрического тока в том виде, как они даны в уравнениях (Е) п. 607.

Из этого следует, что наша гипотеза эквивалентна предположению о том, что скорость частицы среды с составляющими u, v, w является величиной, которая может входить в комбинации с электрическим током, составляющие которого u, v, w.

826. Если вернуться к выражению под знаком тройного интеграла в (4), подставив вместо значений , , значения ', ', ', данные уравнениями (1), и записать

d

dh

вместо

d

dx

+

d

dy

+

d

dz

,

(6)

то выражение под знаком интеграла станет таким:

C

d

dh

d

dy

d

dz

+

d

dh

d

dz

d

dx

+

+

d

dh

d

dx

d

dy

.

(7)

В случае волн в плоскости, нормальной к оси z, смещения являются функциями только z и t, так что d/dh= d/dz, и это выражение сводится к следующему:

C

d^2

dz^2

d^2

dz^2

.

(8)

Кинетическая

энергия на единицу объёма постольку, поскольку она зависит от скоростей смещения, может теперь быть записана в виде

T

=

1

2

(^2+^2+^2)

+

C

d^2

dz^2

d^2

dz^2

,

(9)

где - плотность среды.

827. Составляющие X и Y приложенной силы, отнесённые к единице объёма, могут быть выведены отсюда при помощи уравнений Лагранжа, п. 564. Заметим, что, опуская двойные интегралы по ограничивающей поверхности и дважды интегрируя по частям по x, можно показать, что

d^2

dz^2

dx

dy

dz

=

d^3

dz^2dt

dx

dy

dz

.

Следовательно,

dT

d

C

d^3

dz^2dt

.

Таким образом, выражения для сил следующие:

X

=

d^2

dt^2

2C

d^3

dz^2dt

,

(10)

Y

=

d^2

dt^2

+

2C

d^3

dz^2dt

.

(11)

Эти силы возникают вследствие действия всей остальной среды на рассматриваемый элемент; в случае изотропной среды они должны иметь форму, указанную Коши:

X

=

A

d^2

dz^2

+

A

d

dz

+ и т.д.,

(12)

Y

=

A

d^2

dz^2

+

A

d

dz

+ и т.д.

.

(13)

828. Если мы теперь возьмём случай циркулярно поляризованного луча, для которого

=

r cos(nt-qt)

,

=

r sin(nt-qt)

,

(14)

мы найдём для кинетической энергии в единице объёма

T

=

1

2

r^2

n^2

C

r^2

q^2

n

(15)

и для потенциальной энергии в единице объёма

V

=

1

2

r^2

(

Aq^2

+

Aq

+…

)

=

1

2

Q

,

(16)

Поделиться:
Популярные книги

Плохой парень, Купидон и я

Уильямс Хасти
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Плохой парень, Купидон и я

Кротовский, сколько можно?

Парсиев Дмитрий
5. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Кротовский, сколько можно?

Адвокат вольного города 5

Кулабухов Тимофей
5. Адвокат
Фантастика:
городское фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Адвокат вольного города 5

Лекарь для захватчика

Романова Елена
Фантастика:
попаданцы
историческое фэнтези
фэнтези
5.00
рейтинг книги
Лекарь для захватчика

Идеальный мир для Лекаря 10

Сапфир Олег
10. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 10

Миф об идеальном мужчине

Устинова Татьяна Витальевна
Детективы:
прочие детективы
9.23
рейтинг книги
Миф об идеальном мужчине

Рота Его Величества

Дроздов Анатолий Федорович
Новые герои
Фантастика:
боевая фантастика
8.55
рейтинг книги
Рота Его Величества

С Д. Том 16

Клеванский Кирилл Сергеевич
16. Сердце дракона
Фантастика:
боевая фантастика
6.94
рейтинг книги
С Д. Том 16

Венецианский купец

Распопов Дмитрий Викторович
1. Венецианский купец
Фантастика:
фэнтези
героическая фантастика
альтернативная история
7.31
рейтинг книги
Венецианский купец

Лейб-хирург

Дроздов Анатолий Федорович
2. Зауряд-врач
Фантастика:
альтернативная история
7.34
рейтинг книги
Лейб-хирург

Барон диктует правила

Ренгач Евгений
4. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон диктует правила

Завод 2: назад в СССР

Гуров Валерий Александрович
2. Завод
Фантастика:
попаданцы
альтернативная история
фэнтези
5.00
рейтинг книги
Завод 2: назад в СССР

Кодекс Охотника. Книга XVIII

Винокуров Юрий
18. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XVIII

Неудержимый. Книга IX

Боярский Андрей
9. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга IX