Хаос. Создание новой науки
Шрифт:
Маркус часами изучал фотографии из архивов НАСА, великолепные изображения, полученные на аппаратуре шведской фирмы «Хассельблад», которая запечатлела и людей на Луне, и турбулентность на Юпитере. Универсальность законов Ньютона позволила Маркусу составить программу для решения задачи, которую он формулировал как поиск закономерностей поведения массы плотного водорода и гелия, напоминающей незажженную звезду. Юпитер вращается быстро, период его вращения составляет приблизительно десять земных часов. Это вращение порождает направленную в сторону мощную силу Кориолиса, которая толкает назад человека, идущего сквозь вихрь. Именно такая сила и подпитывает Пятно.
В отличие от Лоренца, который использовал маломощный компьютер для составления приблизительных графиков погоды, Маркус располагал гораздо более широкими возможностями,
Пятно представляло собой самоорганизующуюся систему, порожденную и регулируемую теми же нелинейными эффектами вращений, которые создают непредсказуемый беспорядок вокруг него. Это был образчик стабильного хаоса.
Еще старшекурсником Маркус изучал традиционную физику, осваивал теорию линейных уравнений и ставил эксперименты, пытаясь с их помощью решить сложные проблемы, которые приводили к уравнениям нелинейным. Свой подкоп под крепостные стены научной традиции он вел втайне, поскольку не полагалось выпускнику тратить драгоценное время на возню с нелинейными уравнениями, которые все равно не имеют решения. Помня об этом, Маркус относился к своим исследованиям как к хобби и не вдруг узрел в них нечто такое, что можно было рассматривать как знамение хаоса. Когда же это случилось, он замер на миг в восхищении и воскликнул: «Вот здорово! Как вам понравится такой маленький беспорядок?» Этот вопрос был адресован реальному миру, сиречь коллегам и учителям, а мир ответил: «Да не волнуйся ты так! Это всего лишь погрешность эксперимента».
Но в отличие от большинства физиков Маркус отлично усвоил уроки Лоренца, состоявшие в том, что детерминистская система может демонстрировать не одно только периодическое поведение. Он понимал, что необходимо искать неупорядоченность, заключающую в себе структурированные фрагменты. Маркус рассматривал загадку Большого Красного Пятна, сознавая, что сложная система может породить турбулентность и организованность одновременно. Он чувствовал в себе силы для созидания в новой области науки, которая нашла особое применение компьютерам, и был готов причислить себя к новому типу ученых. Они, эти ученые, были не столько астрономами, не столько физиками или прикладными математиками, сколько специалистами по хаосу.
Глава 3
Взлеты и падения жизни
При использовании математики в биологии следует всегда проверять результат интуицией, сопоставляя его с разумным биологическим поведением рассматриваемых объектов. Когда такая проверка выявит расхождение, нужно учесть вероятность того, что: а) была допущена математическая ошибка; б) исходные предположения неверны и/или являются слишком грубой моделью реальной ситуации; в) интуиция исследователя недостаточно развита; г) открыт новый основополагающий принцип.
Стаи рыб жадно пожирают планктон. Влажные тропические леса кишат неизвестными рептилиями, птицами, скользящими под навесом густой листвы, гудящими, словно частицы в ускорителе, насекомыми. Там, где царит вечная мерзлота, идет трудная борьба за выживание: регулярно, раз в четыре года, стремительно возрастают, а затем убывают популяции мышей-полевок и леммингов. Наш мир — огромная лаборатория природы, создавшей около пяти миллионов взаимодействующих друг с другом биологических видов. Или пятьдесят миллионов? Специалистам точно не известно.
Биологи XX века, обратившись к математике, создали новую дисциплину — экологию, которая, абстрагируясь от реальной жизни сообществ животных и растений, стала рассматривать их как динамические системы. Экологи включили
Когда в 70-е годы хаос превратился в обособленную отрасль знания, экологам в ней была отведена специальная ниша. Ведь они тоже прибегали к математическому моделированию, сознавая, впрочем, что их модели лишь слабое приближение к реальному миру, в котором кипит жизнь. Зато осознание этого факта позволяло проникаться важностью идей, которые математики считали не более чем странными. Появление в стабильных системах неупорядоченного поведения означало для эколога отличный результат. Уравнения, применявшиеся в биологии популяций, являлись копиями физических моделей определенных фрагментов Вселенной. Тем не менее предмет исследования биологических наук превосходил сложностью любую физическую задачу. Математические модели биологов, как и те, что создавались экономистами, демографами, психологами, градостроителями, привносили в эти далекие от точности дисциплины элементы строгости и жесткости, однако напоминали карикатуры на реальный мир. Разумеется, стандарты, принятые в разных областях знания, различались: физику система уравнений Лоренца казалась простой, если не сказать примитивной, а для биолога она представляла непреодолимую трудность.
Биологи вынуждены были создать новые методы исследований, несколько по-иному подгоняя математические абстракции под реальные феномены. Физик, анализируя определенную систему (допустим, два маятника, соединенные стержнем), начинает с подбора уравнений: сначала лезет в справочник, а если там не найдется ничего подходящего, строит нужные уравнения исходя из основополагающих теоретических принципов. Зная механизм функционирования обычного маятника и учитывая жесткую связь (стержень), физик попытается решить уравнения, если такое возможно. Биологу же, напротив, никогда не придет мысль теоретически вывести необходимые уравнения, основываясь лишь на знаниях об отдельной популяции животных. Ему необходимо собрать исчерпывающие данные, а затем уж найти уравнения, которые дали бы схожий с реальностью результат. Что получится, если поместить тысячу рыб в пруд с ограниченными пищевыми ресурсами? Что изменится, если выпустить туда еще пятьдесят акул, поедающих по две рыбы в день? Какая судьба постигнет вирус, вызывающий гибель определенного количества животных и распространяющийся с известной скоростью, которая зависит от плотности популяции? Экологи идеализировали подобные задачи, стараясь решить их с помощью уже известных формул.
Зачастую такой подход срабатывал. Биология популяций выяснила кое-что об истории возникновения жизни, об отношениях хищников и их жертв, о том, как влияет изменение плотности населения в регионе на распространение болезни. Если математическая модель показывала, как процесс развивается, достигает равновесия или затухает, экологи могли представить себе обстоятельства, при которых вероятны подобные события.
Одно из весьма полезных упрощений заключалось в моделировании окружающего мира в рамках отдельных временных интервалов. Так, стрелка наручных часов секунда за секундой скачет вперед, вместо того чтобы двигаться непрерывно и незаметно. Дифференциальные уравнения, которые описывают плавно изменяющиеся во времени процессы, трудно решить. Гораздо проще использовать так называемые разностные уравнения, вполне пригодные для описания скачущих от состояния к состоянию процессов. К счастью, большинство популяций животного мира проходит свой жизненный цикл за год. Изменения, происходящие от года к году, зачастую важнее тех, что случаются в сплошной временной среде. В отличие от людей многие насекомые, например, успевают развиться, достичь зрелости, дать потомство и умереть за один сезон, и периоды жизни поколения поэтому не накладываются друг на друга. Чтобы рассчитать, какова будет численность популяции непарного шелкопряда следующей весной или сколько людей зимой заболеют корью, экологу хватает данных текущего года. Столь точная повторяемость цифр, подобная неизменяющейся подписи человека, дает весьма слабое представление о сложности системы, однако для пытливого ума и этой малости достаточно.
Аргумент барона Бронина 3
3. Аргумент барона Бронина
Фантастика:
попаданцы
аниме
сказочная фантастика
фэнтези
рейтинг книги
Венецианский купец
1. Венецианский купец
Фантастика:
фэнтези
героическая фантастика
альтернативная история
рейтинг книги
Темный Лекарь 4
4. Темный Лекарь
Фантастика:
фэнтези
аниме
рейтинг книги
Невеста на откуп
2. Невеста на откуп
Фантастика:
фэнтези
рейтинг книги
Сын Багратиона
Фантастика:
попаданцы
альтернативная история
рейтинг книги
Барону наплевать на правила
7. Закон сильного
Фантастика:
боевая фантастика
попаданцы
аниме
рейтинг книги
Зайти и выйти
Проза:
военная проза
рейтинг книги
Барон Дубов
1. Его Дубейшество
Фантастика:
юмористическое фэнтези
аниме
сказочная фантастика
фэнтези
рейтинг книги
Я все еще князь. Книга XXI
21. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
рейтинг книги
Как я строил магическую империю 2
2. Как я строил магическую империю
Фантастика:
попаданцы
аниме
рейтинг книги
Пограничная река. (Тетралогия)
Пограничная река
Фантастика:
фэнтези
боевая фантастика
рейтинг книги
Предатель. Ты променял меня на бывшую
7. Измены
Любовные романы:
современные любовные романы
рейтинг книги
Отрок (XXI-XII)
Фантастика:
альтернативная история
рейтинг книги
