Чтение онлайн

на главную - закладки

Жанры

Хаос. Создание новой науки
Шрифт:

В сравнении с математикой Стива Смэйла математика экологии — это то же самое что десять заповедей в сравнении с Талмудом: отличный набор действующих правил, но ничего особо запутанного. Для описания популяции, численность которой с каждым годом меняется, биологу достаточно проделать вычисления, доступные даже студенту высшей школы. Предположим, что будущая численность популяции непарного шелкопряда полностью зависит от ее численности в текущем году. Вообразите, что у вас есть таблица, отражающая эту зависимость: если численность особей достигнет 31 тысячи в текущем году, следовательно, через год их будет уже 35 тысяч, и т. д. Можно представить соотношение между данными величинами как правило следующего содержания: численность популяции в будущем году есть функция от нынешней численности. Каждая функция может быть изображена графически, что позволяет охватить ее единым взглядом.

При использовании простой модели, которая подобна только что описанной, наблюдение за изменяющейся во времени численностью популяции

сводится к определению начальной цифры и повторению однотипных вычислений на базе выбранной функциональной зависимости. Данные для третьего года выводятся из данных для второго и т. д. Благодаря подобному итерационному процессу можно рассмотреть историю популяции на протяжении многих лет. Тут обнаруживается своего рода обратная связь, когда результат каждого года служит исходной величиной для последующего. Обратная связь может стать неуправляемой, как бывает, когда звук из громкоговорителя проходит обратно через микрофон, мгновенно усиливаясь до невыносимого визга. С другой стороны, обратная связь способна породить и стабильность, как в случае с термостатом, который регулирует температуру в жилом доме: любое ее увеличение сверх определенного уровня ведет к охлаждению, а за снижением следует нагрев.

Возможно применение нескольких типов функций. Та, которую используют при упрощенном подходе, предполагает, что численность популяции xежегодно увеличивается на определенное число особей; это линейная функция x c= rx, где xи x c— численности в предыдущий и последующий годы соответственно. Данное выражение иллюстрирует классическую мальтузианскую схему увеличения популяции, не сдерживаемого пищевым и моральным факторами. Величина rесть коэффициент роста численности особей. Допустим, его значение равно 1,1. В таком случае, если популяция в текущем году насчитывает 10 особей, в следующем их будет уже 11. Если начальная цифра составляет 20 тысяч, конечная достигнет 22 тысяч. Численность популяции растет и растет, словно сумма, которая положена на сберегательный счет, предполагающий капитализацию процентов.

Впрочем, экологи давно уже поняли, что им необходимо нечто более сложное. Ученый, наблюдая за рыбами в реальном водоеме, должен постараться найти функцию, которая учитывала бы жестокую реальность, например угрозу голода или соперничество в стае. По мере роста популяции истощается запас пищи. Размеры небольшой стаи быстро растут, а чересчур большая сокращается. Возьмем жуков-вредителей. Попробуйте каждый год первого августа подсчитывать их численность в вашем саду. Чтобы упростить задачу, не принимайте во внимание птиц, болезни данного вида насекомых — учтем лишь имеющийся запас пищи. Выяснится, что жуки активно размножаются, когда их мало, но стоит им чересчур расплодиться, как они объедят весь сад и после этого погибнут от голода.

В мальтузианской схеме неограниченного увеличения численности популяции значение линейной функции роста всегда будет увеличиваться. Схема же, более приближенная к жизни, должна включать в себя особый фактор, сдерживающий рост, если популяция уже и так велика. Наиболее подходящей кажется функция, которая будет резко возрастать при небольших размерах популяции, сводить рост ее численности примерно к нулю при средних размерах и снижаться при быстром размножении особей. Пользуясь ею из раза в раз, эколог может наблюдать, как ведет себя популяция на протяжении длительных периодов времени, и придать своей модели определенную стабильность. Позаимствовав все необходимое из математики, эколог будет рассуждать примерно так: «Мы имеем уравнение. Вот переменная, являющаяся коэффициентом воспроизводства. Вот другая — коэффициент естественной смертности. Третья переменная служит коэффициентом смертности, обусловленной внешними причинами, в том числе голодом и нападением хищников. И вот, смотрите: популяция будет расти с такой-то скоростью, пока не достигнет такого-то уровня равновесия».

Но как найти подобную функцию? Могут подойти многие уравнения. Простейшей модификацией, пожалуй, окажется линейная зависимость, предложенная Мальтусом: х с = (1- x). Как и выше, величина rявляется коэффициентом роста, который можно увеличить или уменьшить. Новый член (1- x) удерживает рост в определенных границах, т. е. когда хвозрастает, 1- xуменьшается [3] . Имея калькулятор, можно задать начальное значение, выбрать коэффициент роста и вычислить результат — численность популяции в следующем году.

3

Удобства ради в данной весьма абстрактной модели численность особей выражена через дробь, которая больше нуля, но меньше единицы, причем нуль обозначает

вымирание, а единица — наиболее высокую численность животных (в данном случае рыб), достижимую в пределах популяции. Итак, начнем: произвольно выберем значение параметра r, скажем 2,7, и начальную численность популяции, к примеру 0,02. Отнимем от единицы 0,02 и получим 0,98, умножим 0,98 на 0,02 и получим в итоге 0,0196. Теперь умножим полученный результат на 2,7 и получим 0,0529. Крошечная начальная численность популяции выросла более чем в два раза. Повторим процедуру, используя только что полученную численность особей в качестве исходных данных, и получим 0,1353. С небольшим калькулятором, в который можно ввести определенную программу, для получения такого результата нужно лишь нажимать одну и ту же клавишу снова и снова. Популяция увеличивается до 0,3159, затем до 0,5835; 0,6562 — рост численности замедляется. Далее, по мере того как смертность «догоняет» воспроизводство, численность достигает 0,6092; 0,6428, 0,6199, 0,6362, 0,6249. Значения в числовом ряду скачут: то возрастают, то уменьшаются. Впрочем, заканчивается он строго определенным значением: 0,6328, 0,6273, 0,6312, 0,6285, 0,6304, 0,6291, 0,6300, 0,6294, 0,6299, 0,6295, 0,6297, 0,6296, 0,6297, 0,6296, 0,6296, 0,6296, 0,6296, 0,6296, 0,6296, 0,6296. Это явный успех. Когда все расчеты выполнялись вручную, и даже во времена механических счетных машинок с ручным вводом, дальше подобных вычислений дело не шло.

Рис. 3.1. Популяция достигает равновесия после роста, чрезмерного увеличения численности особей и ее снижения.

К 50-м годам экологи уже использовали варианты рассмотренного выше уравнения, известного как логистическое разностное уравнение. В частности, В.-Е. Рикер из Австралии применил его для оценки рыбных промыслов. Ученые поняли, что коэффициент роста rявляется важной характеристикой модели. В физических системах, откуда, собственно, и позаимствовала экология подобные уравнения, данный параметр отвечал количеству теплоты, или силе трения, или другим физическим величинам, порождаемым хаотическим движением, — словом, количеству нелинейности. Применительно к рыбным угодьям он должен соответствовать плодовитости рыб, колебанию численности популяции в обоих направлениях (что именуется биотическим потенциалом). Вопрос заключался в том, каков механизм влияния различных факторов на дальнейшую судьбу изменяющейся популяции. Очевидно, что более низкое значение параметра повлечет за собой стабилизацию числа особей на относительно невысоком уровне, а то, что повыше, приведет к стабилизации на более высоком уровне. Это справедливо для многих величин, но отнюдь не для всех. Некоторые исследователи, и Рикер в их числе, применяли величины, имевшие достаточно высокие значения, и, осуществляя опыты, разглядели хаос.

Кажется удивительным, что поведение ряда показателей, поддающихся измерению и исчислению, обнаруживает определенные странности, досадные для любого, кто работает с ручной вычислительной машинкой. Конечно, бесконтрольный рост чисел еще не наблюдается, но нет и стабильности. Впрочем, ни один из ученых 60-х годов не был склонен (а может, не хватало упорства) продолжать вычисления до тех пор, пока искомая упорядоченность не будет найдена. Так или иначе, колебания численности популяции дали экологам повод предположить, что происходят они около некоего скрытого уровня равновесия. Считая последнее весьма важным, экологи ни в коем случае не предполагали, что этого уровня может не быть.

Справочники и учебники, посвященные логистическим уравнениям и их более сложным вариантам, не содержали, как правило, никаких указаний на проявления неупорядоченности. Дж. Мэйнард Смит в своей классической работе «Математические идеи в биологии», вышедшей в 1968 г., так определил возможные перспективы развития: численность популяции часто является величиной постоянной, или же отклонения случаются «весьма регулярно» в области предполагаемой точки равновесия. Автор не был столь наивен, чтобы допускать отсутствие хаотичного элемента в жизни реальных популяций. Он лишь полагал, что с описанными им математическими моделями хаос не имеет ничего общего. Будь это иначе, биологи избегали бы пользоваться подобными моделями. Если модель не оправдывала ожиданий своего создателя относительно реального положения дел в популяции, расхождение всегда можно было объяснить тем, что какая-то величина (возрастной состав популяции, специфика ареала обитания или географической среды, соотношение полов) осталась неучтенной.

Чаще всего неупорядоченность числового ряда ученые списывали на несовершенство счетной машинки. Интерес представляли стабильные решения, устойчивость казалась лучшей наградой. В конце концов, процедура подбора нужных уравнений и их решения требовала известных усилий. Никто не хотел впустую тратить время на ошибочные изыскания, не выявлявшие стойкой тенденции, и ни один опытный исследователь не забывал, что его уравнения не более чем примитивная версия реальных событий. На упрощения шли ради моделирования упорядоченности. Стоило ли преодолевать трудности, чтобы узреть хаос?

Поделиться:
Популярные книги

Аргумент барона Бронина 3

Ковальчук Олег Валентинович
3. Аргумент барона Бронина
Фантастика:
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Аргумент барона Бронина 3

Венецианский купец

Распопов Дмитрий Викторович
1. Венецианский купец
Фантастика:
фэнтези
героическая фантастика
альтернативная история
7.31
рейтинг книги
Венецианский купец

Темный Лекарь 4

Токсик Саша
4. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 4

Невеста на откуп

Белецкая Наталья
2. Невеста на откуп
Фантастика:
фэнтези
5.83
рейтинг книги
Невеста на откуп

Сын Багратиона

Седой Василий
Фантастика:
попаданцы
альтернативная история
4.00
рейтинг книги
Сын Багратиона

Барону наплевать на правила

Ренгач Евгений
7. Закон сильного
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Барону наплевать на правила

Зайти и выйти

Суконкин Алексей
Проза:
военная проза
5.00
рейтинг книги
Зайти и выйти

Барон Дубов

Карелин Сергей Витальевич
1. Его Дубейшество
Фантастика:
юмористическое фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Барон Дубов

Я все еще князь. Книга XXI

Дрейк Сириус
21. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я все еще князь. Книга XXI

Как я строил магическую империю 2

Зубов Константин
2. Как я строил магическую империю
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Как я строил магическую империю 2

Пограничная река. (Тетралогия)

Каменистый Артем
Пограничная река
Фантастика:
фэнтези
боевая фантастика
9.13
рейтинг книги
Пограничная река. (Тетралогия)

Предатель. Ты променял меня на бывшую

Верди Алиса
7. Измены
Любовные романы:
современные любовные романы
7.50
рейтинг книги
Предатель. Ты променял меня на бывшую

Отрок (XXI-XII)

Красницкий Евгений Сергеевич
Фантастика:
альтернативная история
8.50
рейтинг книги
Отрок (XXI-XII)

По машинам! Танкист из будущего

Корчевский Юрий Григорьевич
1. Я из СМЕРШа
Фантастика:
боевая фантастика
попаданцы
альтернативная история
6.36
рейтинг книги
По машинам! Танкист из будущего