Чтение онлайн

на главную - закладки

Жанры

Избранные научные труды
Шрифт:

В текущем столетии изучение вновь открытых свойств материи, таких, как естественная радиоактивность, убедительно подтвердило основы атомной теории. В частности, благодаря развитию усилительных устройств стало возможным изучать явления, существенно зависящие от отдельных атомов, и даже удалось получить обширные сведения о структуре атомных систем. Первым шагом было признание того, что электрон является общей составной частью всех веществ; дальнейшим шагом, существенно дополнившим наши представления о строении атома, было открытие Резерфордом атомного ядра, где в чрезвычайно малом объёме сосредоточена почти вся масса атома. Неизменяемость свойств элементов при обычных физических и химических процессах непосредственно объясняется тем, что в таких процессах, хотя связи электронов и могут сильно меняться, ядро остаётся без изменений. Резерфордом была доказана также и взаимная превращаемость атомных ядер под действием более мощных сил. Тем самым Резерфорд открыл совершенно новую область исследований, которую часто называют современной алхимией. Как известно, эти исследования должны

были в конечном счёте привести к возможности освобождать огромные количества энергии, запасённые в атомных ядрах.

Хотя ряд фундаментальных свойств материи и объяснялся на основе простой картины атома, но с самого начала было ясно, что классические идеи механики и электромагнетизма недостаточны для объяснения существенной устойчивости атомных структур, которая проявляется в том, что элементы имеют характерные для них свойства. Ключ к выяснению этой проблемы дало открытие Планком в первый год нашего столетия универсального кванта действия. К этому открытию Планка привёл его проницательный анализ законов теплового излучения. Открытие Планка выявило присущее атомным процессам свойство цельности, совершенно чуждое механистическому пониманию природы. Стало ясно, что классические физические теории — это идеализации, пригодные только для описания таких явлений, в анализе коих все величины размерности действия достаточно велики, чтобы можно было пренебречь квантом действия. Это условие выполняется с избытком в явлениях обычного масштаба, в атомных же явлениях мы встречаемся с закономерностями совсем нового вида, не поддающимися детерминистическому наглядному описанию.

Рациональное обобщение классической физики, которое учитывало бы существование кванта, но по-прежнему позволяло бы однозначное толкование опытных фактов, допускающих определение инертной массы и электрического заряда электрона и ядра, представляло очень трудную задачу. Соединёнными усилиями целого поколения физиков-теоретиков было тем не менее постепенно создано стройное и — в широких пределах — исчерпывающее описание атомных явлений. Это описание использует математический аппарат, в который вместо переменных величин классических физических теорий входят символы, подчинённые некоммутативным правилам умножения, содержащим постоянную Планка. Благодаря самому характеру таких математических абстракций этот формальный аппарат не допускает привычного наглядного толкования; он предназначен для того, чтобы установить зависимости между наблюдениями, полученными при чётко определённых условиях. Зависимости эти имеют существенно статистический характер в соответствии с тем, что в данной экспериментальной установке могут иметь место различные индивидуальные квантовые процессы.

При помощи аппарата квантовой механики достигнута подробная систематизация огромного количества экспериментальных данных о физических и химических свойствах материи. Сверх того, приспособив формальный аппарат к требованиям теории относительности, оказалось возможным упорядочить в широких пределах быстро накапливающиеся новые сведения о свойствах элементарных частиц и о строении атомных ядер. Несмотря на поразительную плодотворность квантовой механики, радикальный отход от привычных физических способов описания, и в особенности отказ от самой идеи детерминизма, вызвал сомнения в умах многих физиков и философов. Возник вопрос, имеем ли мы здесь дело с временным выходом из положения или же новый метод объективного описания представляет окончательный шаг, уже необратимый. Разъяснение этой проблемы действительно потребовало радикального пересмотра самых основ описания и толкования физического опыта.

В связи с этим мы должны прежде всего признать, что, даже если явления выходят за пределы применимости классической физики, всё же характеристика экспериментальной установки и запись произведённых наблюдений должны даваться на обычном языке, надлежащим образом дополненном специальной физической терминологией. Это есть ясное и логическое требование, поскольку самое слово «эксперимент» относится к такой ситуации, когда мы можем сказать другим, что мы делали и что узнали. Фундаментальное отличие анализа явлений в классической и в квантовой физике состоит, однако, в том, что в первом случае взаимодействием между объектами и измерительными приборами можно пренебречь (или же его можно компенсировать), тогда как во втором случае это взаимодействие составляет существенную часть явлений. Присущая собственно квантовому явлению цельность находит свое логическое выражение в том обстоятельстве, что всякая попытка чётко подразделить явление потребовала бы изменения в экспериментальной установке, несовместимого с возникновением самого явления.

В частности, невозможность отдельного контроля над взаимодействием между атомными объектами и приборами, необходимыми для фиксирования условий опыта, не допускает неограниченного сочетания локализации в пространстве-времени с применением динамических законов сохранения — сочетания, на котором основано детерминистическое описание классической физики. В самом деле, всякое однозначное применение понятий пространства и времени предполагает такую экспериментальную установку, в которой происходит принципиально не поддающийся контролю перенос количества движения и энергии к неподвижным шкалам и синхронизованным часам, нужным для определения системы отсчёта. И наоборот, отчёт о явлениях, которые характеризуются законами сохранения количества движения и энергии, предполагает принципиальный отказ от детальной локализации в пространстве и времени. Эти обстоятельства находят количественное выражение в соотношениях неопределённости Гейзенберга,

которые устанавливают связь между допусками в значениях кинематических и динамических переменных, фиксирующих состояние физической системы. По самому характеру формального аппарата квантовой механики такие соотношения не могут быть, однако, истолкованы как «модельные» свойства объектов, т. е. свойства, опирающиеся на классические наглядные представления. Мы имеем здесь дело со взаимоисключающими друг друга условиями однозначного применения самих понятий пространства и времени, с одной стороны, и динамических законов сохранения, с другой.

В связи с этим иногда говорят: «Наблюдение нарушает ход явления» или «Физические свойства атомных объектов создаются их измерением». Однако такие высказывания способны лишь внести путаницу, так как слова «явления» и «наблюдения», равно как и слова «свойства» и «измерения», употребляются здесь в смысле, несовместимом с обычным языком и с практическим их определением. Действительно, с позиций объективного описания лучше употреблять слово «явление», только если речь идёт о наблюдениях, полученных при определённых условиях, т. е. таких, в описание которых входят данные обо всей экспериментальной установке. При такой терминологии проблема наблюдения в квантовой физике освобождается от всякой запутанности. Кроме того, эта терминология напоминает нам о том, что всякое атомное явление цельно и законченно. Это значит, что наблюдение такого явления основано на регистрации его при помощи усилительных устройств, действующих необратимо; таковы, например, наблюдения, в которых используются неисчезающие пятна на фотопластинке, вызванные проникновением электронов в эмульсию. Здесь важно уяснить себе, что формальный аппарат квантовой механики допускает однозначное применение только к такого рода завершённым явлениям. И в этом отношении он является рациональным обобщением классической физики, в которой не только завершённое явление, но и каждый этап хода событий описывается измеримыми величинами.

Свобода экспериментирования, сама собой разумевшаяся в классической физике, конечно, сохраняется и в квантовой физике; она соответствует здесь свободному выбору экспериментальной установки, что предусмотрено и математической структурой применяемого в квантовой физике формального аппарата. То обстоятельство, что в общем случае одна и та же экспериментальная установка может дать разные отсчёты, иногда картинно описывают как «выбор природы» между такими возможностями. Само собой разумеется, что такая фраза не содержит намёка на одухотворение природы, а просто указывает на невозможность обеспечить (как это считалось возможным раньше) желаемое направление законченного неделимого процесса. Здесь логический подход не может пойти дальше вывода относительных вероятностей для появления того или иного индивидуального явления при данных экспериментальных условиях. В этом отношении квантовая механика представляет собой последовательное обобщение детерминистического механического описания; последнее содержится в ней как асимптотический предел для случая, когда масштаб физических явлений достаточно велик, чтобы можно было пренебречь квантом действия.

Чрезвычайно характерную черту атомной физики представляет новое соотношение между явлениями, наблюдаемыми при разных экспериментальных условиях, для описания которых приходится применять разные элементарные понятия. В самом деле, какими бы противоречивыми ни казались, при попытке изобразить ход атомных процессов в классическом духе, получаемые при таких условиях опытные данные, их надо рассматривать как дополнительные, в том смысле, что они представляют одинаково существенные сведения об атомных системах и взятые вместе исчерпывают эти сведения. Понятие дополнительности ни в коем случае не предполагает отказа от нашего положения независимых наблюдателей природы; это понятие нужно рассматривать как логическое выражение нашей ситуации по отношению к объективному описанию в этой области опытного знания. Взаимодействие между измерительными приборами и исследуемыми физическими системами составляет неотъемлемую часть квантовых явлений. Признание этого факта не только обнаружило не подозревавшуюся раньше ограниченность механистического понимания природы (в котором физическим системам приписываются самостоятельные свойства), но и заставило нас при упорядочении опыта обращать должное внимание на условия наблюдения.

Возвращаясь к неоднократно обсуждавшемуся вопросу о том, чего следует требовать от физического объяснения явлений, нужно иметь в виду следующее. Уже классическая механика обходится без понятия причины при рассмотрении равномерного движения; далее, теория относительности научила нас тому, что соображения инвариантности и эквивалентности могут рассматриваться как категории рационального объяснения. Подобно этому в дополнительном описании квантовой физики мы имеем дело с дальнейшим самосогласованным обобщением. Это обобщение допускает включение закономерностей, которые играют решающую роль в описании фундаментальных свойств материи, но выходят за пределы детерминистического описания. Таким образом, история физической науки наглядно показывает, как исследование всё более широких областей опытного знания, с одной стороны, обнаруживает неожиданные ограничения для привычных идей, но тем самым указывает, с другой стороны, новые пути для восстановления логического порядка. Как мы теперь покажем, гносеологический урок, содержащийся в ходе развития атомной физики, напоминает нам о подобных же ситуациях, возникающих при описании и толковании опытных данных в других областях, лежащих далеко за пределами физической науки. Этот урок позволяет нам подметить в разных областях общие черты и тем самым содействовать стремлению к единству знания.

Поделиться:
Популярные книги

Товарищ "Чума" 3

lanpirot
3. Товарищ "Чума"
Фантастика:
городское фэнтези
попаданцы
альтернативная история
5.00
рейтинг книги
Товарищ Чума 3

Сын Багратиона

Седой Василий
Фантастика:
попаданцы
альтернативная история
4.00
рейтинг книги
Сын Багратиона

На границе империй. Том 6

INDIGO
6. Фортуна дама переменчивая
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.31
рейтинг книги
На границе империй. Том 6

На границе империй. Том 7. Часть 3

INDIGO
9. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.40
рейтинг книги
На границе империй. Том 7. Часть 3

Газлайтер. Том 10

Володин Григорий
10. История Телепата
Фантастика:
боевая фантастика
5.00
рейтинг книги
Газлайтер. Том 10

Газлайтер. Том 4

Володин Григорий
4. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 4

Последняя из забытого рода

Властная Ирина
1. Последняя из забытого рода
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Последняя из забытого рода

Курсант. На Берлин

Барчук Павел
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант. На Берлин

Камень

Минин Станислав
1. Камень
Фантастика:
боевая фантастика
6.80
рейтинг книги
Камень

Идеальный мир для Лекаря 10

Сапфир Олег
10. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 10

Адвокат вольного города 3

Кулабухов Тимофей
3. Адвокат
Фантастика:
городское фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Адвокат вольного города 3

Недотрога для темного дракона

Панфилова Алина
Фантастика:
юмористическое фэнтези
фэнтези
сказочная фантастика
5.00
рейтинг книги
Недотрога для темного дракона

Фиктивный брак

Завгородняя Анна Александровна
Фантастика:
фэнтези
6.71
рейтинг книги
Фиктивный брак

Идеальный мир для Лекаря 25

Сапфир Олег
25. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 25