Чтение онлайн

на главную - закладки

Жанры

Избранные научные труды
Шрифт:

Упомянутые выше флуктуации теснейшим образом связаны с невозможностью наглядно иллюстрировать на основе классических понятий характерное для квантовой теории поля представление о световых квантах. В частности, они выражают взаимно исключающее положение между точным знанием квантового состава электромагнитного поля и знанием среднего значения какой-либо его компоненты, взятого по определённой пространственно-временной области. Рассмотрим световые кванты с определённым параметром поляризации i и с заданным импульсом и энергией hx, hy, hz и h=hc2x + 2y + 2z. Если мы даже будем считать известной плотность световых квантов i(x, y, z),

то хотя математические ожидания всех средних значений поля будут равны нулю, но математическое ожидание квадрата флуктуации будет для всякой компоненты поля [например, для компоненты E(G)x определяемой по формуле (4)] выражаться легко выводимой формулой

S(G)

=

1

V2T2

h

3

 

T

dt

1

 

T

dt

2

 

V

dv

1

 

V

dv

2

x

x

2

t1t2

+

 

i

i

+1

x

x

cos[

x

(x

1

– x

2

)

+

y

(y

1

– y

2

)

+

z

(z

1

– z

2

)

(t

1

– t

2

)

]

x

x

dxdydz

.

(10)

Из формулы (10) можно усмотреть, что при заданном квантовом составе упомянутые флуктуации никогда не могут отсутствовать. Действительно, даже при i = 0, т. е. при полном отсутствии световых квантов, они принимают конечное положительное значение, которое можно после нетрудных вычислений привести к виду

S

0

(G)

=

2

3^2

hc

V^2

 

V

dv

1

 

V

dv

2

1

r^2[(cT)^2-r^2]

,

(11)

Для всякого другого распределения световых квантов, определяемого заданием плотности i, математическое ожидание квадрата флуктуации усреднённого значения компоненты поля будет больше, чем S0(G). С другой стороны, вытекающие из аппарата теории флуктуации усреднённых значений поля могут стать сколь угодно малыми, если предположить известными (хотя бы из прямых измерений) значения компоненты поля. Разумеется, в этом случае спектральная плотность световых квантов i уже не будет определённой величиной, и мы должны будем довольствоваться статистическими характеристиками этой плотности.

Для обсуждения возможностей измерения существенным является, далее, то обстоятельство,

что выражение (11) справедливо не только для флуктуаций поля в пространстве, где нет световых квантов. Оно представляет квадрат флуктуации усреднённого значения поля также и в том более общем случае, когда источниками поля служат распределения токов и зарядов, допускающие классическое описание. В этом случае состояние поля однозначно определяется следующими требованиями: во-первых, математическое ожидание каждой компоненты поля должно совпадать с классическим значением этой компоненты; во-вторых, число световых квантов с заданным импульсом и поляризацией должно распределяться вокруг своего среднего значения n0 (которое можно оценить на основе принципа соответствия) по закону распределения вероятности

w(n)

=

n n0en0

n!

(12)

справедливому для независимых событий. Для флуктуаций поля в этом состоянии получается в результате простых вычислений как раз выражение (11). В силу особых свойств флуктуаций чёрного излучения оказывается далее, что и в общем случае поля заданного квантового состава добавление полей от каких-либо источников, допускающих классическое описание, не оказывает влияния на явления, связанные с флуктуациями.

Корень квадратный из выражения (11) может рассматриваться как некоторая критическая величина поля S в том смысле, что при рассмотрении усреднённых значений поля мы можем отвлечься от его флуктуаций только в том случае, когда эти усреднённые значения оказываются значительно большими, чем S. Для суждения о возможности проверки аппарата теории в собственно квантовой области приходится вводить ещё и другую критическую величину поля A. Эта последняя равна корню квадратному из произведения (8) дополнительных неопределённостей в значениях поля, усреднённых по двум областям, перекрывающим друг друга только отчасти, а именно взаимно смещенных в пространстве и во времени на величины порядка L и соответственно T. Для напряжённостей поля, значительно больших, чем A, мы возвращаемся, очевидно, к области применимости классической электромагнитной теории; в этой области все квантовые особенности аппарата теории теряют свое значение. Оценивая критические величины поля при помощи формул (8) и (11), мы приходим к выводу, что в случае L <= cT обе величины, A и S, оказываются одного порядка, а именно

A

~

S

~

hc

L·cT

.

(13)

В случае же L > cT оказывается

A

~

h

L^3T

1/2

; S

~

hc

L^2

.

(14)

Таким образом, в пределе, когда L >> cT критическое значение поля A будет гораздо больше, чем S, вследствие чего мы можем при проверке характерных выводов из аппарата теории в большой мере отвлечься от флуктуаций поля.

В дальнейшем мы будем сравнивать выводы, полученные в этом параграфе из аппарата квантовой электродинамики, с физическими возможностями измерения поля. Но прежде чем переходить к этому сравнению, мы хотели бы ещё подчеркнуть, что непротиворечивому толкованию этой теории никоим образом не препятствуют такие парадоксальные черты в её математической записи, как появление бесконечной нулевой энергии. В частности, этот последний парадокс (который, впрочем, может быть устранен 1 путём формального изменения в записи теории) не имеет прямого отношения к проблеме измеримости величины поля. В самом деле, определение электромагнитной энергии в заданной пространственно-временной области потребовало бы согласно теории поля знания компонент поля в каждой точке области; измерить же их в каждой точке невозможно. Физическое измерение энергии поля можно было бы осуществить только при помощи надлежащего механического приспособления, которое отделяло бы электромагнитные поля в заданной области пространства от остального поля так, чтобы энергию в этой области можно было бы потом измерить, применяя закон сохранения. Но подобное разделение полей вызвало бы вследствие взаимодействия с измерительным механизмом неподдающееся контролю изменение энергии поля в заданной области; наличие же такого изменения является существенным для разъяснения тех хорошо известных парадоксов, которые возникают при обсуждении флуктуаций энергии чёрного излучения 2.

Поделиться:
Популярные книги

Последняя Арена 7

Греков Сергей
7. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 7

Завод-3: назад в СССР

Гуров Валерий Александрович
3. Завод
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Завод-3: назад в СССР

Черный дембель. Часть 4

Федин Андрей Анатольевич
4. Черный дембель
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Черный дембель. Часть 4

Студент из прошлого тысячелетия

Еслер Андрей
2. Соприкосновение миров
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Студент из прошлого тысячелетия

Двойник Короля 2

Скабер Артемий
2. Двойник Короля
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Двойник Короля 2

Бывшие. Война в академии магии

Берг Александра
2. Измены
Любовные романы:
любовно-фантастические романы
7.00
рейтинг книги
Бывшие. Война в академии магии

Газлайтер. Том 10

Володин Григорий
10. История Телепата
Фантастика:
боевая фантастика
5.00
рейтинг книги
Газлайтер. Том 10

Леди Малиновой пустоши

Шах Ольга
Любовные романы:
любовно-фантастические романы
6.20
рейтинг книги
Леди Малиновой пустоши

Санек 4

Седой Василий
4. Санек
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Санек 4

Душелов. Том 4

Faded Emory
4. Внутренние демоны
Фантастика:
юмористическая фантастика
ранобэ
фэнтези
фантастика: прочее
хентай
эпическая фантастика
5.00
рейтинг книги
Душелов. Том 4

Усадьба леди Анны

Ром Полина
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Усадьба леди Анны

И вспыхнет пламя

Коллинз Сьюзен
2. Голодные игры
Фантастика:
социально-философская фантастика
боевая фантастика
9.44
рейтинг книги
И вспыхнет пламя

Идеальный мир для Лекаря 13

Сапфир Олег
13. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 13

На границе империй. Том 10. Часть 4

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 4