Избранные научные труды
Шрифт:
Как мы видели, в каждой экспериментальной установке необходимо проводить границу между теми частями рассматриваемой физической системы, которые мы причисляем к измерительным приборам, и теми, которые являются объектами, подлежащими исследованию. Можно сказать, что необходимость такого рода разграничения и составляет принципиальное различие между классическим и квантовомеханическим описанием физических явлений. Правда, в пределах каждого измерительного процесса мы можем провести эту границу по желанию в том или ином месте; выбор места определяется как в классическом, так и в квантовом случае главным образом соображениями удобства. Однако в то время как в классической физике выбор того или иного места для границы между объектом и измерительным прибором не связан с какими-либо изменениями в характере описания изучаемых физических явлений, в квантовой теории он влечёт за собой изменения в этом описании. Фундаментальная важность различия между объектом и прибором в квантовой теории обусловлена, как мы видели, тем, что для толкования всех измерений в собственном смысле
Ввиду такого положения вещей не может быть и речи о каком-либо ином однозначном толковании символов квантовой механики, кроме того, которое заключено в известных правилах, относящихся к предсказанию результатов, получаемых при помощи данной экспериментальной установки, описываемой чисто классическим образом; правила эти находят свое общее выражение в упомянутых выше теоремах о каноническом преобразовании. Обеспечивая надлежащее соответствие квантовой теории с классической, эти теоремы исключают, в частности, всякое внутреннее противоречие в квантовомеханическом описании, которое могло бы возникнуть в связи с переменой места, где проводится граница между объектом и измерительным прибором. В самом деле, очевидным следствием приведённых выше рассуждений является следующее: при любой постановке опыта и любых измерительных манипуляциях выбор места для этой границы возможен лишь в пределах той области, где квантовомеханическое описание данного процесса по существу эквивалентно классическому описанию.
В заключение мне хотелось бы отметить то огромное значение, которое имеет преподанный общей теорией относительности урок для вопроса о физической реальности в области квантовой теории. В самом деле, несмотря на все характерные различия, между положением вещей в обоих обобщениях классической теории имеется поразительная аналогия, которая неоднократно отмечалась. В частности, только что обсуждённое нами обособленное положение, которое занимают в описании квантовых явлений измерительные приборы, представляет близкую аналогию с необходимостью пользоваться и в теории относительности обыкновенным описанием всех измерительных процессов, включая резкое разделение на пространство и время, причём эта необходимость имеет место, несмотря на то, что самой сущностью теории относительности является установление новых физических законов такого рода, что для понимания их мы должны отказаться от привычного разделения понятий пространства и времени 1. Характерная для теории относительности зависимость всех показаний масштабов и часов от принятой системы отсчёта может быть, далее, сравнена с тем не поддающимся контролю обменом количеством движения и энергией между измеряемыми объектами и всеми приборами, определяющими пространственно-временную систему отсчёта, который приводит нас в квантовой теории к положению вещей, характеризуемому понятием дополнительности. Действительно, эта новая черта естествознания означает радикальный пересмотр наших взглядов на физическую реальность, который может быть поставлен в параллель с тем фундаментальным изменением всех представлений об абсолютном характере физических явлений, который был вызван общей теорией относительности.
1 Именно это обстоятельство совместно с релятивистской инвариантностью квантовомеханических соотношений неопределённости и гарантирует нам совместимость рассуждений, изложенных в настоящей статье, со всеми требованиями теории относительности. Этот вопрос будет рассмотрен подробнее в подготовляемой к печати работе, где автор рассмотрит, в частности, весьма интересный парадокс, выдвинутый Эйнштейном и относящийся к приложению теории тяготения к измерениям энергии; решение этого парадокса представляет особо поучительную иллюстрацию общности рассуждений, основанных на понятии дополнительности. В той же работе будут обсуждены подробнее пространственно-временные измерения в квантовой теории, причём будут приведены все необходимые математические выкладки и схемы экспериментальных установок, словом, всё то, что было опущено в настоящей статье, где главное наше внимание было обращено на диалектическую сторону вопроса, поставленного в заголовке.
1936
45 ЗАХВАТ НЕЙТРОНА И СТРОЕНИЕ ЯДРА *
*Neutron Capture and Nuclear Constitution. Nature, 1936, 137, 344—348.
Из всех свойств атомных ядер, обнаруженных в фундаментальных исследованиях Резерфорда и его последователей в явлениях искусственных ядерных превращений, одним из наиболее поразительных является исключительная тенденция таких ядер вступать в реакцию друг с другом, как только между ними устанавливается непосредственный контакт. Действительно, почти все типы ядерных реакций, согласующихся с сохранением энергии, по-видимому, происходят при близких соударениях ядер. Разумеется, при столкновениях между заряженными частицами и ядрами контакту часто препятствует или делает его менее вероятным взаимное электрическое отталкивание; вследствие этого типичные черты ядерных реакций, быть может, особенно ярко проявляются при столкновениях с нейтронами. Ещё в первых своих работах по исследованию свойств быстрых нейтронов Чэдвик обнаружил высокую эффективность последних в отношении вызываемых ими ядерных превращений 1. В особенности после открытия супругами Жолио-Кюри искусственной радиоактивности наиболее интересные данные получены в результате исследований Ферми и его сотрудников по искусственной радиоактивности при бомбардировке
1 J. Chadwick. Proc. Roy. Soc., 1933, A142, 1.
2 E. Fermia. o. Proc. Roy. Soc., 1934, A147, 483; 1935, A149, 522.
Типичным результатом опытов с нейтронами больших скоростей является значительная вероятность вылета -частицы или протона при столкновении нейтрона с ядром не слишком большого атомного номера, вылета, сопровождающегося захватом нейтрона и образованием ядра нового, большей частью -радиоактивного элемента. Ядерное эффективное сечение таких столкновений в действительности того же порядка величины, что и сечение, отвечающее простому рассеянию быстрых нейтронов ядрами, что в свою очередь соответствует обычным размерам ядра. Другим типичным результатом этих опытов можно считать неожиданно сильное стремлении, даже в случае столкновения быстрого нейтрона с тяжёлым атомом, присоединиться к ядру с испусканием -кванта и образовать новый изотоп, устойчивый или радиоактивный. На самом деле, для процессов такого типа эффективное сечение, хотя и становится в несколько раз меньше, имеет всё-таки тот же порядок величины, что и геометрическое сечение ядра.
Процессы захвата быстрых нейтронов только что упомянутого типа являются особенно существенными для выяснения механизма столкновений между нейтроном и ядром. Действительно, замечательная резкость линий характеристических спектров -лучей радиоактивных элементов свидетельствует о том, что время жизни возбуждённых состояний ядер, связанных с испусканием этих линий, больше периода (около 10– 20 сек) самих этих линий. Для того чтобы вероятность испускания подобного излучения за время столкновения быстрого нейтрона с ядром была достаточной для объяснения экспериментально найденного эффективного сечения этого процесса захвата, время соударения должно быть гораздо более длительным, нежели промежуток времени (около 10– 21 сек), необходимый для простого прохождения нейтрона сквозь ядро.
Явления захвата нейтронов тем самым заставляют нас предполагать, что столкновение между быстрым нейтроном и тяжёлым ядром должно вести прежде всего к образованию составной системы, характеризующейся замечательной устойчивостью. Возможный последующий распад этой промежуточной системы с вылетом материальной частицы или переход в конечное устойчивое состояние с испусканием кванта излучения следует рассматривать как самостоятельные процессы, не имеющие непосредственной связи с первой фазой соударения. Мы встречаемся здесь с существенной разницей, ранее ясно не распознанной, между собственно ядерными реакциями и обычными соударениями быстрых частиц и атомных систем, соударениями, которые до сих пор для нас являлись главным источником сведений относительно строения атома. Действительно, возможность счёта посредством таких столкновений отдельных атомных частиц и изучение их свойств обязаны прежде всего «открытости» рассматриваемых систем, которая делает весьма маловероятным обмен энергией между отдельными составляющими частицами в течение соударения. Однако вследствие плотной упаковки частиц в ядре мы должны быть готовы к тому, что именно этот обмен энергией играет основную роль в типичных ядерных реакциях.
Если, например, мы рассматриваем столкновение между быстрым нейтроном и ядром, то очевидно, что нельзя сравнивать этот процесс с простым отклонением пути нейтрона во внутреннем поле ядра, быть может связанным с соударением с отдельной ядерной частицей, ведущим к вылету последней. Напротив, мы должны ясно понять, что избыток энергии падающего нейтрона должен быстро распределиться между всеми частицами ядра таким образом, что в течение некоторого промежутка времени ни одна частица не будет обладать кинетической энергией, достаточной для того, чтобы покинуть ядро. Возможное последующее освобождение протона, -частицы или даже нейтрона из промежуточной сложной системы должно поэтому говорить о сложном процессе, в котором энергия может опять концентрироваться на какой-то частице у поверхности ядра.
В настоящее время едва ли можно составить себе детальное представление об этих процессах. Действительно, мы должны сознаться, что у нас нет никаких оправданий даже для предположений о существовании внутри ядра частиц, освобождаемых при разрушении ядра. В частности, известные трудности, связанные с индивидуальным существованием в пространственной области ядерных размеров заряженных частиц с такой небольшой массой покоя, какую имеют электроны и позитроны, заставляют нас рассматривать -распад как процесс, ведущий к образованию электрона как индивидуальности в механическом смысле 1. В этом отношении положение здесь, конечно, существенно отличается от случая распада ядра с вылетом тяжёлых частиц — нейтронов, протонов и -частиц. Тот факт, что массы всех ядер в первом приближении являются целыми кратными единиц, близких к массе нейтрона, позволяет рассматривать эти частицы как механические индивидуальности внутри ядра. Вследствие небольшой разницы между массами нейтрона и протона по сравнению с энергией связи ядра, измеряемой так называемым дефектом массы, предположение о существовании в ядре частиц с теми же электрическими и магнитными свойствами, что и у свободных нейтронов и протонов, должно казаться более гипотетическим. Вследствие недостаточности наших сведений о том исключительно плотном состоянии материи, с которым мы имеем дело в ядрах, мы скорее можем рассматривать целочисленные значения единичных электрических зарядов ядер и продуктов их расщепления как фундаментальный аспект атомистики электричества, который, однако, не объясняется современными теориями строения атома.
Голодные игры
1. Голодные игры
Фантастика:
социально-философская фантастика
боевая фантастика
рейтинг книги
Найденыш
2. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
рейтинг книги
Игра Кота 2
2. ОДИН ИЗ СЕМИ
Фантастика:
фэнтези
рпг
рейтинг книги
Связанные Долгом
2. Рожденные в крови
Любовные романы:
современные любовные романы
остросюжетные любовные романы
эро литература
рейтинг книги
Адвокат вольного города 3
3. Адвокат
Фантастика:
городское фэнтези
альтернативная история
аниме
рейтинг книги
Квантовый воин: сознание будущего
Религия и эзотерика:
эзотерика
рейтинг книги
Вечная Война. Книга II
2. Вечная война.
Фантастика:
юмористическая фантастика
космическая фантастика
рейтинг книги
Русь. Строительство империи 2
2. Вежа. Русь
Фантастика:
попаданцы
альтернативная история
рпг
рейтинг книги
Сердце Дракона. Том 11
11. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
рейтинг книги
Энциклопедия лекарственных растений. Том 1.
Научно-образовательная:
медицина
рейтинг книги
