Чтение онлайн

на главную - закладки

Жанры

Квантовая механика и интегралы по траекториям
Шрифт:

Конечно, при любом реальном измерении точное число зарегистрированных частиц n, вообще говоря, не будет совпадать с их средним числом. Однако можно спросить, какова вероятность наблюдения некоторого числа n частиц за время, в течение которого в среднем появляются n частиц. Ответ даётся распределением Пуассона

P

n

=

nn

n!en

(12.1)

С другой стороны, можно интересоваться вероятностными вопросами иного типа. Например, какова вероятность того, что после появления предыдущей частицы следующая появится в момент t? На вопрос, сформулированный таким образом, не существует правильного ответа. Если же мы поинтересовались бы вероятностью

того, что интервал между появлениями частиц будет равен или больше t, то ответ e– t мог бы быть получен. Это значит, что можно определить лишь, находится ли момент t внутри некоторого временного интервала. Таким образом, если нас интересует конкретный момент t, то должны исходить из бесконечно малого интервала и формулировать вопрос следующим образом: какова (бесконечно малая) вероятность того, что промежуток времени между двумя событиями будет лежать внутри окрестности dt, окружающей момент t? Ответ записывается в виде

P(t)

dt

=

e

– t

dt

.

(12.2)

Так приходим к понятию распределения вероятности для непрерывной переменной: P(t) есть отнесённая к единице измерения t вероятность того, что интервал между событиями равен t. Запишем распределение вероятности для x как P(x), если P(x)dx представляет вероятность того, что переменная находится в окрестности dx точки x. Можно легко распространить это определение на случай двух переменных и написать вероятность распределения x и y как P(x,y)dxdy. При этом мы подразумеваем, что вероятность найти переменные x и y в области R плоскости xy даётся интегралом

 

R

P(x,y)dxdy

.

Хотелось бы расширить концепцию вероятности ещё дальше. Желательно рассматривать распределения не только отдельных переменных, но также и целых кривых, т.е. хотелось бы построить вероятностные функции, или, точнее, функционалы, которые позволят ответить на вопрос: какова вероятность какой-либо конкретной эволюции физического процесса, развивающегося во времени, например напряжения на вольтметре или цены на товар, или, в случае двух переменных, какова вероятность формы поверхности моря как функции широты и долготы? Все это приводит нас к необходимости рассмотреть вероятность некоторой функции.

Запишем это так. Вероятность наблюдения функции f(t) есть функционал P[f(t)]. При этом следует помнить, что вопросы относительно такой вероятности имеют смысл, только если определить интервал, внутри которого мы ищем определённую функцию. Так же, как в приведённом выше примере, мы должны были спросить: какова вероятность найти конец временного промежутка внутри интервала dt? Теперь аналогично следует спрашивать: какова вероятность найти функцию в пределах некоторого более или менее ограниченного класса функций (например, среди кривых, заключённых между точками a и b) в течение всего времени интересующего нас хода событий? Если мы назовём такую совокупность функций классом A и спросим, какова вероятность найти функцию f(t) в классе A, то ответ записывается в виде интеграла по траекториям

P[f(t)]

Df(t)

,

A

(12.3)

где интегрирование проведено по всем функциям класса A.

Это выражение можно осмыслить по аналогии с функцией вероятности для нескольких переменных. Вообразим, что точками t1,t2,… время разбито на дискретные интервалы (как мы это делали в гл. 2, когда только что определили интегралы по траекториям). Тогда значения функции в избранных временных точках f(t1),f(t2),… = f1,f2,…, аналогичны аргументам функции распределения многих переменных. Вероятность обнаружения заданной кривой можно понимать теперь как вероятность получения заданной системы величин f1,f2,… в интервале df1,df2,…,

т.е. P(f1,f2,…) df1,df2,…. Если затем перейти к пределу, устремляя число дискретных интервалов времени к бесконечности, то получим вероятность обнаружения непрерывной кривой f(t) в интервале Df(t), стоящую под знаком интеграла по траекториям в выражении (12.3). Определённый таким образом функционал вероятности и соответствующий вероятностный подход мы будем использовать далее в этой главе.

§ 2. Характеристические функции

Полезно и дальше использовать аналогию между функционалом вероятности траектории и более привычной функцией распределения. Оба эти подхода имеют некоторые общие понятия, например понятие среднего значения. В случае обычных функций распределения дискретных величин, когда вероятность обнаружения некоторого числа n равна Pn, среднее значение определяется как

n

=

n=1

n

P

n

.

(12.4)

Для непрерывно распределённых переменных

x

=

x

P(x)

dx

.

(12.5)

Аналогичным образом среднее значение функционала Q[f(t)] определим как

Q

=

Q[f(t)]P[f(t)]Df(t)

P[f(t)]Df(t)

.

(12.6)

В последнем соотношении, как и в гл. 7, мы включили в знаменатель интеграл по траекториям, который напоминает нам, что мы всегда должны иметь дело с проблемой нормировки. В принципе можно было бы с самого начала вычислить интеграл по траекториям от функции распределения, приравнять его единице и определить нормировочную постоянную. Однако во многих практических случаях удобнее оставлять функцию ненормированной, просто сокращая числовые множители в числителе и знаменателе выражения, которые сами по себе могут оказаться крайне сложными для вычисления.

Средний квадрат функции в заданный момент времени, например при t=a, так же как и среднее значение функции, можно выразить через интегралы по траекториям. В этом случае получается функционал

[f(a)]^2

=

[f(a)]^2P[f(t)]Df(t)

P[f(t)]Df(t)

.

(12.7)

Одним из наиболее важных случаев усреднения функций согласно (12.5) является вычисление среднего значения eikx. Это среднее значение называется характеристической функцией и равно

(k)

=

e

ikx

=

e

ikx

P(x)

dx

.

(12.8)

Иногда эту функцию называют также производящей функцией для моментов. Она представляет собой просто преобразования Фурье для P(x) и очень полезна для оценки различных характеристик распределения, так как её наличие эквивалентно заданию самой функции распределения. Последнее вытекает из возможности выполнить обратное преобразование

P(x)

=

e

– ikx

(k)

dk

.

(12.9)

Некоторые важные параметры этого распределения можно определить, вычисляя производные характеристической функции. Так, например, среднее значение x равно

x

=

– i

d(k)

dk

k=0

,

(12.10)

что легко показать, дифференцируя обе части равенства (12.8) по k и полагая затем k=0. В самом деле, существует последовательность соотношений

Поделиться:
Популярные книги

Убивать чтобы жить 4

Бор Жорж
4. УЧЖ
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 4

Новый Рал 7

Северный Лис
7. Рал!
Фантастика:
попаданцы
5.00
рейтинг книги
Новый Рал 7

Неудержимый. Книга XII

Боярский Андрей
12. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XII

Воевода

Ланцов Михаил Алексеевич
5. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Воевода

Запечатанный во тьме. Том 1. Тысячи лет кача

NikL
1. Хроники Арнея
Фантастика:
уся
эпическая фантастика
фэнтези
5.00
рейтинг книги
Запечатанный во тьме. Том 1. Тысячи лет кача

Хозяин Теней 3

Петров Максим Николаевич
3. Безбожник
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Хозяин Теней 3

Мастер темных Арканов 4

Карелин Сергей Витальевич
4. Мастер темных арканов
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Мастер темных Арканов 4

Мастер темных арканов 2

Карелин Сергей Витальевич
2. Мастер темных арканов
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Мастер темных арканов 2

Орден Багровой бури. Книга 3

Ермоленков Алексей
3. Орден Багровой бури
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Орден Багровой бури. Книга 3

Неудержимый. Книга IV

Боярский Андрей
4. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга IV

Вечная Война. Книга II

Винокуров Юрий
2. Вечная война.
Фантастика:
юмористическая фантастика
космическая фантастика
8.37
рейтинг книги
Вечная Война. Книга II

На границе империй. Том 4

INDIGO
4. Фортуна дама переменчивая
Фантастика:
космическая фантастика
6.00
рейтинг книги
На границе империй. Том 4

Брак по-драконьи

Ардова Алиса
Фантастика:
фэнтези
8.60
рейтинг книги
Брак по-драконьи

(Не)свободные, или Фиктивная жена драконьего военачальника

Найт Алекс
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
(Не)свободные, или Фиктивная жена драконьего военачальника