Чтение онлайн

на главную - закладки

Жанры

Квантовая механика и интегралы по траекториям
Шрифт:

Многие задачи в какой-то степени можно поставить и частично решить, исходя из уравнения (12.64). Рассмотрим конкретный пример. Быстрая частица пролетает сквозь вещество и вблизи ядер претерпевает резкие, но небольшие по величине изменения скорости. Какова вероятность того, что, пройдя толщину T, частица отклонится на расстояние D от первоначальной прямолинейной траектории и будет двигаться под углом к ней, как это показано на фиг. 12.1?

Фиг. 12.1. Движение быстрой частицы пердендикулярно

пластинке вещества толщиной T.

Пройдя толщину t в направлении первоначального движения, быстрая частица вследствие взаимодействий с ядрами вещества отклоняется на расстояние x. В конце концов она вылетает из пластинки на расстоянии D от точки x=0, в которой она вылетела бы при отсутствии взаимодействий, и движется под углом к первоначальному направлению.

Предположим, что взаимодействие не приводит к заметному уменьшению продольной скорости частицы и вещество, сквозь которое проходит частица, однородно. Далее, допустим, что угол всегда мал и что движение представляет собой результат очень большого числа взаимодействий, каждое из которых даёт малый эффект. Допустим также, что среднее число столкновений в слое бесконечно малой толщины dt равно и что в каждом столкновении происходит отклонение на угол , определяемый распределением вероятности pd; пусть этому распределению соответствует среднеквадратичное отклонение

^2

p(

)d(

)

=

^2

(12.65)

(мы будем обозначать ^2 через R).

Ограничимся изучением проекции движения на двумерную плоскость, содержащую первоначальный путь частицы. Движение в плоскости, перпендикулярной ей, будет происходить аналогично, а движение в любой из плоскостей можно рассматривать независимо друг от друга. Обозначим через t глубину проникновения частицы в пластинку; пусть — угол мгновенного направления движения в рассматриваемой плоскости, а x — отклонение частицы от первоначальной траектории, как указано на фиг. 12.1. Эти параметры связаны соотношением dx= или x=.

Мы предполагаем, что отклонения частицы на угол происходят внезапно, так что =f(t), где функция f представляется суммой -функций со случайными значениями времени и случайными относительными коэффициентами. Это означает, что x=f(t) и Pf[f(t)] обладает характеристическим функционалом

=

exp

{1-W[k(s)]}

ds

,

(12.66)

где

W[]

=

p(

)

e

i

d

.

(12.67)

Заметим, что среднее значение углового отклонения считается равным нулю, а сами эти отклонения предполагаются малыми. Если теперь разложить G, так что

W[]

=

p(

)

1+i

^2

2

^2

+…

d

,

(12.68)

и ограничиться только членами не выше второго порядка по , т.е. положить W[]=1-^2^2/2, то функционал (12.66) будет иметь вид

=

exp

1

2

R

[k(s)]^2

ds

.

(12.69)

А

это в свою очередь означает, что

P

f

[f(t)]

=

exp

1

2R

[f(t)]^2

dt

(12.70)

и, следовательно,

P

x

[x(t)]

=

const·exp

1

2R

T

0

[x(t)]^2

dt

(12.71)

Мы должны вычислить распределение P(D,), определяющее вероятность того, что частица будет выходить из пластины под углом и смещением D, если при входе в пластину она имела x(0)=0 и x(0)=0. Нас интересует не точная траектория частицы в веществе, а только условия выхода x(T)=D и x(T)=. Поэтому выразим искомое распределение в виде интеграла по всем траекториям:

P(D,)

=

exp

1

2R

T

0

x^2

dt

Dx(t)

,

(12.72)

где все траектории, по которым берётся интеграл, удовлетворяют предполагаемым граничным условиям. Этот интеграл гауссовой формы можно вычислить методами, развитыми в § 5 гл. 3. Он имеет экстремум для траектории

....

x

 

(t)

=

0

.

(12.73)

Решение этого уравнения, удовлетворяющее нашим граничным условиям, имеет вид

x(t)

=

(3D-T)

t

T

^2

+

(T-2D)

t

T

^3

.

(12.74)

Подставив его в показатель экспоненты в (12.72), получим

1

2R

T

0

x^2

dt

=

6

RT^3

D

T

2

^2

+

^2

2RT

.

(12.75)

Отсюда следует искомое распределение

P(D,)

=

const·exp

6

RT^3

D

T

2

^2

+

^2

2RT

.

(12.76)

Поделиться:
Популярные книги

Последний натиск на восток ч. 2

Чайка Дмитрий
7. Третий Рим
Фантастика:
попаданцы
альтернативная история
7.50
рейтинг книги
Последний натиск на восток ч. 2

Магнат

Шимохин Дмитрий
4. Подкидыш
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Магнат

Гимн шута 2

Федотов Антон Сергеевич
2. Шут
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Гимн шута 2

Академия

Сай Ярослав
2. Медорфенов
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Академия

Солдат Империи

Земляной Андрей Борисович
1. Страж
Фантастика:
попаданцы
альтернативная история
6.67
рейтинг книги
Солдат Империи

Эпоха Опустошителя. Том I

Павлов Вел
1. Вечное Ристалище
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Эпоха Опустошителя. Том I

Тайны затерянных звезд. Том 1

Лекс Эл
1. Тайны затерянных звезд
Фантастика:
боевая фантастика
космическая фантастика
фэнтези
5.00
рейтинг книги
Тайны затерянных звезд. Том 1

Третий. Том 2

INDIGO
2. Отпуск
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий. Том 2

Повелитель теней. Том 3

NikL
3. Повелитель теней
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Повелитель теней. Том 3

Маверик

Астахов Евгений Евгеньевич
4. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Маверик

Неудержимый. Книга XVII

Боярский Андрей
17. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XVII

Кодекс Охотника. Книга XXI

Винокуров Юрий
21. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XXI

Шайтан Иван 2

Тен Эдуард
2. Шайтан Иван
Фантастика:
боевая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Шайтан Иван 2

Бестужев. Служба Государевой Безопасности. Книга четвертая

Измайлов Сергей
4. Граф Бестужев
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бестужев. Служба Государевой Безопасности. Книга четвертая