Чтение онлайн

на главную - закладки

Жанры

Нанотехнологии. Наука, инновации и возможности

Фостер Линн

Шрифт:

Проволоки толщиной несколько нанометров никогда не существовали в природе и могут считаться искусственными объектами в самом строгом смысле этого понятия. В настоящее время они представляют собой весьма обширный и коммерчески ценный класс наноматериалов, так как они могут быть синтезированы в виде заранее спланированных монокристаллических структур, обладающих заранее спланированными и строго заданными характеристиками, которые могут регулироваться в процессе синтеза или выращивания. В число этих характеристик входят такие важные параметры, как химический состав, диаметр, длина, степень и тип легирования и т. п. Производство полупроводниковых нанопроволок (НП) можно считать наиболее изученным и технологически разработанным направлением в изготовлении наноматериалов (в данном случае правильнее будет называть НП строительными блоками для создания других материалов или устройств), позволяющим осуществлять дальнейшую модификацию или интеграцию. В качестве примера возможностей методики выращивания нанопроволок на рис. 13.5 представлена микрофотография одной из структур рассматриваемого типа. Такие полупроводниковые НП или структуры на их основе уже с успехом применяются для создания распространенных и коммерчески важных полупроводниковых устройств, среди которых можно упомянуть нанометрические полевые транзисторы (FET), p-n-диоды, светоизлучающие диоды (LED), плоскостные биполярные транзисторы, инверторы, сложные логические схемы и даже целые вычислительные устройства. Отдельные устройства или блоки из НП могут быть объединены в схемы, которые вообще не имеют аналогов в обычной электронике, не говоря уже о том, что после химической модификации поверхности неорганических полупроводниковых НП можно создавать не просто новые устройства, но даже новые принципы или копцепции развития вычислительной техники.

Рис. 13.5. Упорядоченная структура нанопроволок из полупроводника ZnO. Однородность структуры (места роста, плотность) и весь процесс выращивания проволок регулируются предварительным нанесением на твердую подложку катализаторов, содержащих золото

В последние годы возник и стал широко использоваться еще один уникальный класс объектов, названных нанолентами (НЛ). Эти квазиодномерные наноматериалы обладают хорошо выраженной структурой и поверхностью и отличаются разнообразием, связанным с их химическим составом и кристаллографической структурой. НЛ действительно представляют собой ленты и полоски (иногда их называют нанополосками) из полупроводниковых оксидов цинка, олова, кадмия и галлия (на рис. 13.6 приведена микрофотография наноленты из ZnO). Такие ленты легко можно получить известными коммерческими методами испарения порошков оксидов при высоких температурах. Уже сейчас можно производить оксидные монокристаллические НЛ с заданными размерами и правильной прямоугольной формой сечения, обладающие высокой химической чистотой и структурной однородностью. На основе таких нанолент или полосок уже созданы разнообразные устройства: полевые транзисторы, высокочувствительные газовые датчики, нанорезонаторы, нанокронштейны для атомносиловых микроскопов и т. п. В настоящее время многие исследователи заняты изучением физических свойств НП (например, их теплопроводности и т. д.), а также успешно пытаются синтезировать новые объекты этого класса (в частности, нанопружины и нанокольца), которые могут найти широкое применение для изготовления датчиков, преобразователей, приводных устройств и т. д.

Рис. 13.6. Нанолента, полученная осаждением паров ZnO при высокой температуре. Продукт характеризуется высокой однородностью поверхности и размеров прямоугольного сечения

13.4.1. Применение нанопроволок

13.4.1.1. Биологические датчики на основе нанопроволок

Известно, что электрический заряд многих биомолекул (включая белки и ДНК) меняется в зависимости от их функционального состояния, что может быть использовано для

их детектирования специально спроектированными датчиками. В частности, наличие таких молекул можно зарегистрировать при их химическом связывании с обработанной поверхностью нанопроволок. Например, создан датчик на основе кремниевой нанопроволоки (SiNW), поверхность которой после обработки биотином приобретает способность избирательно связывать стрептавидин, как показано на рис. 13.7.

Рис. 13.7. Регистрация связывания белка. Модифицированная биотином поверхность кремниевой нанопроволоки SiNW (слева) приобретает способность избирательно связывать стрептавидин, образуя комплекс биотин-стрептавидин (справа). Для наглядности процесс представлен лишь схематически, без указания точных размеров нанопроволоки SiNW и белковых молекул

13.4.1.2. Светоизлучающие диоды с пересечением р-п-переходов

Оптоэлектронные детекторы необычного типа могут быть созданы на основе светоизлучающих нанодиодов и нанолазеров из полупроводников с прямыми оптическими переходами типа InP. На рис. 13.8 показано устройство, позволяющее проверять согласованность режима работы перекрестных светодиодов на основе трехмерных «изображений» интенсивности электролюминесценции и фотолюминесценции. Контроль характеристик изделий осуществляется по специальной методике, основанной на цветовых оттенках излучения. Такие методы могут оказаться очень полезными в будущем, например, для контроля качества изделий при промышленном производстве фотонных устройств и т. п.

Рис. 13.8. Трехмерная картина интенсивности электролюминесценции скрещенных светодиодов на основе нанопроволок

13.4.1.3. Логические устройства на основе нанопроволок

Комбинируя пересекающиеся решетки из нанопроволочных светоизлучающих диодов и передатчиков, можно создавать новые устройства с высокими коэффициентами усиления и другими ценными характеристиками, а затем даже формировать из них более сложные схемы. Таким сложным устройствам можно будет придавать новые функциональные способности, включая осуществление логических операций, что может привести к созданию мощных компьютеров нового типа.

Для создания вычислительных устройств необходимо, в первую очередь иметь два основных структурных элемента (транзисторы и диоды), причем транзисторы обеспечивают усиление по напряжению, а диоды – ряд важных операций. Малые размеры наноустройств делают их очень удобными для монтажа, а комбинирование нанодиодов и полевых транзисторов позволяет создавать логические вентили разных типов (AND, OR, NOR), являющиеся основой аппаратного обеспечения современной вычислительной техники (рис. 13.9).

Рис. 13.9. Логическая схема, построенная на основе решетки (1 х 3) пересекающихся нанопроволок с переходами. Врезка на рисунке схематически соответствует изображению на сканирующем электронном микроскопе, а также подключению к символической электрической схеме

13.4.2. Наноструктуры с полярными поверхностями

В качестве материала для коммерческих приложений одним из самых перспективных выглядит упомянутый выше оксид цинка ZnO, обладающий тремя достоинствами. Во-первых, он относится к классу полупроводников с прямыми оптическими переходами и широкой запрещенной зоной, а также способен излучать в ближней (длинноволновой) ультрафиолетовой области и оставаться фотопрозрачным при температурах выше комнатной. Благодаря нецентральной симметрии этот кристалл относится к пьезоэлектрическим, что позволяет создавать на его основе разнообразные электромеханические датчики и устройства связи, тем более что пьезоэлектрический коэффициент поляризованной наноленты ZnO примерно втрое выше, чем у объемного образца. Кроме того, материалам из ZnO можно легко придать биологическую безопасность и совместимость с тканями живых организмов без нанесения специальных покрытий. Биологическая совместимость придает этим материалам исключительную ценность при изготовлении различных биомедицинских устройств или датчиков как для исследовательских, так и для коммерческих целей. Наконец, стоит отметить и то, что этот материал легко подается обработке и на его основе создано множество изделий, о которых кратко рассказывается ниже.

Одним из распространенных методов промышленного изготовления наноструктур является их синтез или формирование из паров при термической сублимации (возгонке) твердых исходных материалов, обычно засыпаемых в виде порошка в центральную часть так называемых трубчатых печей. По мере повышения температуры исходные материалы сублимируются, а затем их ионы осаждаются в зонах печи с более низкой температурой, формируя различные наноструктуры. Процесс может регулироваться (и в эксперименте, и в производственных условиях) сразу по нескольким параметрам, включая кинетику роста, локальную температуру, химический состав исходных веществ и т. д. К настоящему времени разработано множество самых разнообразных процессов, позволяющих получать из ZnO нанообъекты с полярными поверхностями, причем большинство процессов легко воспроизводятся и обеспечивают высокую производительность. В зависимости от условий процесса исследователям иногда удается выращивать удивительные по форме объекты, которым трудно подобрать определения и их приходится условно называть пропеллерами, клетками и т. п. (рис. 13.10).

Рис. 13.10. Разнообразные нанообразования из ZnO с индуцированной или постоянной поляризацией поверхности. Изделия получают термической сублимацией исходных порошков (или другими, указанными ниже способами) и последующим осаждением их паров при контролируемых условиях роста и формообразования. (а) Сотовые структуры, формирующиеся при асимметричном росте на поверхности Zn-(0001); (б) растущие на каталитически активных поверхностях Zn-(0001)стрyктyры с «ножками»; (в) получаемые химическим синтезом из раствора гексагональные диски или кольца; (г) образующиеся при быстром росте частицы в виде «пропеллеров»; (д) образующиеся в результате самосборки спирали без деформаций; (е) спирали из нанолент с постепенно возрастающей толщиной; (ж) пружины; (з) бесшовные монокристаллические нанокольца, образуемые намоткой поляризованных нанолент; (и) сложное «архитектурное» образование из стержней, дуг и колец. На микрофотографиях указаны цифры, характеризующие степень чистоты (в %) соответствующих объектов, каждый из которых формируется в зонах с определенной локальной температурой

В настоящее время оксид цинка ZnO можно считать одним из наиболее перспективных материалов нанотехнологии, который может использоваться в катализе, производстве датчиков, приводов и пьезоэлектрических преобразователей разнообразного применения, а также в создании новых видов акустической и лазерной техники. Интерес к новым материалам и изделиям проявляют также коммерческие производители оптоэлектроники и биомедицинского оборудования. Поляризация поверхности описанных выше структур требуется для некоторых сфер применения и придает наноматериалам дополнительные свойства. Неполярные нанообъекты из ZnO также обладают большим разнообразием и найдут много областей практического применения, причем в их производстве могут быть использованы дополнительные механизмы регулирования процессов роста и формообразования (рис. 13.11).

Рис. 13.11. Различные типы нанообъектов, синтезируемые из ZnO с неполяризованной поверхностью. Изделия получают при термической сублимации исходных порошков и последующим осаждением паров при контролируемых условиях роста и формообразования. В число регулируемых параметров процесса входят материалы, температура выращивания, температурные градиенты при осаждении, типы подложек. (а) Ленты; (б) упорядоченные массивы проволок; (в) трубки; (г) «пропеллеры»; (д) мезопористые трубки; (е) «клетки» и ядра; (ж) иерархическая структура из клеток и пропеллеров. На микрофотографиях приводятся цифры, характеризующие степень чистоты (в %) соответствующих объектов, каждый из которых формируется в зонах с определенной локальной температурой

13.5. Мягкая нанотехнология

Фиона Кейс

Фиона Кейс более 15 лет занимается разработкой и внедрением в промышленное производство новых разновидностей полимеров и поверхностно-активных веществ. Еще в конце 80-х годов она приступила к работе в исследовательском отделе английской фирмы Courtaulds Research, где участвовала в разработках по химической модификации и приданию новых свойств целлюлозным волокнам, делающим их более безопасными для окружающей среды и удобными для переработки. Затем она перешла к изучению микроструктуры углеродных и полимерных волокон методами компьютерного моделирования. Это привело к сотрудничеству с американской фирмой Biosym/Molecular Simulations Inc., являющейся одной из ведущих организаций в этой области. Фиона Кейс переехала в США, где проработала 9 лет в Biosym, а затем стала по контрактам выполнять исследовательские работы для крупнейших американских и европейских фирм, связанных с производством и использованием полимеров. Возглавляемая ею группа подготовила и провела в разных странах десятки семинаров и курсов по моделированию поведения полимерных и волоконных систем. Кроме того, она активно занимается организацией производства и маркетингом новых товаров.

С 1999 года Фиона Кейс возглавляла исследовательскую группу в фирме Colgate Palmotive, занимающуюся изучением структуры и свойств самых разнообразных косметических и пищевых продуктов (зубные пасты, детергенты, лаки, покрытия и т. п.), а также разработкой технологии их производства, упаковки и т. д. В 2003 году Ф. Кейс (совместно с мужем Мартином Кейсом) основала собственную компанию Case Scientific ( www.casescientific.com ), занимающуюся научными консультациями и заказными исследованиями в области так называемой «мягкой» нанотехнологии, моделирования поведения разнообразных материалов, полимерной химии, поверхностно-активных веществ и т. п. Фиона Кейс является членом Королевского химического общества Англии, американского Химического общества, а также Национальной ассоциации писателей, популяризирующих достижения науки.

Многие жидкие или мягкие потребительские товары и изделия (к ним относятся продукты питания, краски, моющие средства, предметы личной гигиены, косметика и т. п.) содержат микро– или наноструктуры, которые образуются обычно методами естественной самоорганизации многих натуральных или синтетических поверхностно-активных веществ и блок-сополимеров. Для получения разнообразных структур и материалов разработана сложная технология получения нужных смесей из поверхностно-активных веществ (ПВА) и полимерных материалов. Эта область наноматериалов и методик их обработки получила название мягкой нанотехнологии.

На рис. 13.12 показана схема действия очень простого неионогенного поверхностно-активного вещества, а на рис. 13.13 приведены некоторые механизмы образования более сложных структур в растворах ПАВ и блок-сополимеров. Образующиеся при этом конкретные структуры определяются множеством условий, среди которых важнейшими являются относительные размеры гиброфильной «головки» и гидрофобного «хвоста» химической молекулы (эта терминология является привычной для специалистов по полимерам и коллоидной химии). Например, ионогенные ПАВ (характеризующиеся наличием заряженных головных групп) в показанных на рисунках механизмах легко образуют сферические мицеллы, неионогенные ПАВ-структуры в виде стержней или нитей, а молекулы ПАВ с несколькими концевыми группами – ячеистые структуры или ламеллы со слоистой, иногда почти плоской структурой. Естественно, в мягкой нанотехнологии форма структур может легко изменяться за счет введения в растворы небольшого количества различных дополнительных веществ, регулирующих параметры жидкой среды и условия роста.

Рис. 13.12. Пример очень простого неионогенного поверхностно-активного вещества (ПАВ). Структурная химическая формула (вверху), общий вид в растворе (слева внизу), схема (внизу справа)

Рис. 13.13. Схематическое представление образования структур различными поверхностно-активными веществами в водной среде: сферические мицеллы (вверху); стержни, или нити (средний рисунок); пузырьки (внизу). На рисунке показаны разрезы наноструктур, показывающие роль гидрофильных головных групп и гидрофобных концевых групп при взаимодействии с окружающей водной средой

Мягкая нанотехнология отличается исключительной чувствительностью к изменению условий процесса. Стоит добавить немного горячей воды в реакционный сосуд с примесями и жирами, как соотношение компонент чуть-чуть изменится, и в среде начнут образовываться мицеллы совершенно новых форм, а примеси начнут объединяться совсем по-другому. Нанося аккуратно на любую поверхность самую высококачественную эмульсионную краску, необходимо помнить, что через некоторое время структура краски (а следовательно, ее вязкость и другие физико-химические свойства) неизбежно изменится, хотя бы в незначительной степени. Многие такие процессы, относящиеся именно к мягкой нанотехнологии, играют очень важную роль при смешивании компонент коммерчески важных изделий, то есть о них следует постоянно помнить при оценке вкуса и текстуры пищевых продуктов типа шоколада, мороженого или йогурта.

Очень трудно или почти невозможно объективно или точно описывать и оценивать характеристики многих продуктов мягкой нанотехнологии, поэтому до самого последнего времени большинство технологов (например, в производстве продуктов питания) руководствуется просто личным опытом, эмпирическими правилами и секретами производства, передаваемыми из поколения в поколение. Проблема заключается в том, что интересующие нас процессы в этой области осуществляются простой молекулярной самоорганизацией, законы которой нам неизвестны, вследствие чего мы не можем предсказывать изменение характера растущих структур при изменении состава смеси. Кроме того, в косметике или пищевой промышленности вообще очень трудно определить, какой именно получаемый продукт следует считать коммерчески успешным (например, очень трудно угадать, какое именно мороженое потребители сочтут вкусным?). Вкусовые и потребительские предпочтения публики остаются неопределенными и изменчивыми, вследствие чего исследователям и технологам часто даже непонятно, к созданию каких структур им следует стремиться и что является важным для конкретных приложений.

Новейшие методы позволяют использовать более строгие и физически обоснованные параметры оценки качества продуктов мягкой нанотехнологии, например, мы может объективно оценивать их характеристики, применяя методики динамического рассеяния света в веществе, ядерного магнитного резонанса, рентгеновского и нейтронного рассеяния, электронной микроскопии и т. п. Более того, для оценки таких продуктов уже предлагаются и применяются автоматические методы, однако следует помнить, что формулы и исходные оценки должны как-то задаваться человеком-программистом. С другой стороны, развиваются совершенно новые теории восприятия, оценки вкуса и методы компьютерного моделирования поведения, что, возможно, позднее и приведет к революционным преобразованиям в самых консервативных производствах, связанных с мягкими нанотехнологиями.

В заключение хотелось бы отметить еще одно важное обстоятельство. Выше рассказывалось лишь о возможностях использования мягких нанотехнологий в производстве продуктов питания, косметики и других товаров бытового назначения, но читатель не должен полагать, что эти технологии не могут быть применены и для более серьезных целей. Наоборот, многие исследователи считают, что самоорганизация и структурирование нанообъектов в жидкой среде позволит в будущем разработать надежные и дешевые способы промышленного производства новых материалов и очень сложных устройств. Например, фирма IBM уже изучает возможности синтеза наноструктур для электронной промышленности в процессах молекулярной самосборки и блок-сополимеризации. В последнее время наметился еще путь к созданию совершенно новых материалов для электроники, связанных именно с разнообразными «мягкими» или гибкими наноструктурами, подобными описанным выше. Идея метода состоит в том, что получаемые в жидких и эмульсионных средах структуры используются затем в качестве своеобразных шаблонов, или матриц, для производства «жестких» объектов с заданными свойствами. Образуемые при блок-сополимеризации эмульсионные формирования (ячейки, мембраны, пузырьки) могут быть химически стабилизированы и применены в качестве «устройств», обеспечивающих перенос лекарственных препаратов внутри организма (включая введение препаратов внутрь клеток). В целом можно сказать, что методы мягкой нанотехнологии, связанные со стабилизацией разнообразных коллоидных систем (растворы и гели наночастиц) и их дальнейшим использованием, представляют новую и весьма перспективную область исследований. [Читатель, заинтересовавшийся возможностями использования эмульсий, мембран и коллоидных систем для практических целей (особенно в области медицины и биохимии), найдет много полезной и разнообразной информации в книге М. Накагаки «Физическая химия мембран». М., Мир, 1991. Прим. перев. ].

Глава 14 Нанодатчики: разработки, перспективы и разнообразие применения

Дэвид Дж. Нагель, Шарон Смит

Дэвид Дж. Нагель стал ученым лишь в зрелом возрасте, сменив множество занятий. До этого он служил в военно-морском флоте США, дослужившись до звания капитана. Позднее он перешел на работу в Лабораторию военноморских сил США (Naval Research Laboratory, NRL). Его научную деятельность отличает разнообразие интересов, однако основным занятием стало конструирование разнообразных микроскопических устройств и приборов.

В настоящее время Д. Нагель руководит отделом конденсированных сред и радиационных исследований в NRL. Он является автором и соавтором более 150 статей, отчетов и книг по микроэлектромеханическим устройствам и смежным вопросам нанотехнологии.

Шарон Смит возглавляет исследовательское отделение известной фирмы Lockheed Martin в городе Бетеста (штат Мэриленд), где занимается разнообразной научно-технической деятельностью, связанной не только с наукой, но и с внедрением разработок в промышленное производство. Одновременно она руководит группой по изучению возможностей нанотехнологий. До этого Ш. Смит успешно работала во многих фирмах и организациях, связанных с организацией научных исследований, управлением производством и внедрением инновационных разработок в США и Европе. Она обладает огромным опытом и считается выдающимся организатором.

Шарон Смит является автором многих ценных публикаций, входит в состав Объединенного комитета по развитию нанотехнологий в штате Виргиния, а также в Совет по материаловедению национальной Академии наук. Имеет несколько научных степеней в различных областях химии.

Возникновение

и развитие нанотехнологий оказало огромное воздействие на многие отрасли науки и техники, однако можно смело утверждать, что наиболее революционные изменения произойдут в производстве и использовании датчиков разных типов. Нанотехнологии создают для разработчиков, производителей и пользователей беспрецедентную возможность одновременно решать все основные задачи данной области, а именно – снизить вес и размеры изделий при уменьшении энергопотребления и повышении специфичности. В данной главе предлагается очень краткое описание возможностей (и, естественно, ограничений) новых технологий, основанных на обработке и использовании свойств вещества на размерах порядка нанометра (одна тысячная доля микрометра). Уже сейчас нанодатчики (включая и те, где возможности новых технологий используются лишь дополнительно) очень широко применяются в промышленности и науке, включая транспорт, медицину, коммуникации, строительство, проблемы обороны и национальной безопасности и т. п. Потенциальные возможности применения различных нанодатчиков представляются просто фантастическими, так как в настоящее время разрабатываются устройства, которые могут вводиться в отдельные биологические клетки, что позволяет регистрировать, например, конкретное химическое или радиационное воздействие на организм астронавтов или следить за развитием болезни в отдельном органе пациента медицинской клиники [78] . Многие такие устройства сейчас раскручиваются инновационными компаниями, что привлекает внимание «большого бизнеса» как к самой нанотехнологии вообще, так и к коммерческим применениям нанообъектов и наноэффектов.

Огромную роль нанотехнологий в области создания и использования различных датчиков легко понять, если вспомнить, что механизм действия практически всех используемых на практике химических и биологических датчиков основан на регистрации какого-либо взаимодействия на атомномолекулярном уровне. Вообще говоря, нанотехнология сводится к возможности создавать новые функциональные материалы, устройства и целые системы, а также использовать атомно-молекулярные процессы или физические эффекты для практических целей [79] .

Нанотехнологии можно рассматривать в качестве очередного этапа развития науки, направленного к созданию более мелких, более быстрых и более дешевых материалов и устройств. В свое время стремление к миниатюризации технических устройств привело к развитию микротехнологий (читатель может вспомнить поразительное уменьшение электронных, оптических и механических приборов за последние десятилетия), результатом чего, кстати, стало бурное развитие производства датчиков и измерительных устройств самого разного типа. Следующим, современным этапом процесса миниатюризации стало использование интегральных схем, оптоволоконной техники и так называемых микроэлектромеханических систем (МЭМС). В настоящее время нанотехнологии ставят перед исследователями и производственниками еще более интересные и сложные задачи, связанные с дальнейшим уменьшением масштабов действия и процессов, что обещает существенный прогресс в науке и технологии.

Общая тенденция к уменьшению размеров строительных «блоков» привела науку к использованию в качестве таких элементов отдельных молекул и даже атомов, что означает, кстати, сближение и слияние технологических процессов разного типа. В этой связи стоит отметить, что в настоящее время наблюдается сближение или синтез различных научных дисциплин, общий смысл которого пока трудно уловить (например, мы наблюдаем явное объединение нанотехнологий, биотехнологий и информационных технологий в единое целое). Такое «перекрывание» и наложение наук должно приводить, как говорят физики, к синергическому эффекту, то есть их взаимодействию, усилению и созданию новых возможностей технологического развития.

14.1. Возможности

Интерес к нанотехнологиям возник в результате нескольких фундаментальных научных достижений конца XX века, первым из которых следует считать прямую возможность точной манипуляции отдельными атомами, ставшую возможной после создания так называемых атомно-силовых зондовых (или сканирующих) микроскопов (SPM). Следующим важным фактором развития новой науки стала возможность синтеза или производства в больших количествах наночастиц, или нанокластеров определенного вида (например, серебра или золота). В дальнейшем общее внимание к наноматериалам и устройствам на их основе привлекло то, что новые вещества и структуры проявляли совершенно неожиданные свойства, связанные с квантовыми и поверхностными эффектами. Наглядными примерами таких научно-технических «сюрпризов» стали абсолютно непривычные новые объекты типа квантовых точек с неожиданными оптическими свойствами и т. п.

Другим важным достижением в этой области стал синтез так называемых углеродных нанотрубок (CNT), представляющих собой очень узкие пустые цилиндры, образованные сеткой углеродных атомов. Уже синтезировано множество типов таких однослойных и многослойных CNT, потенциальные возможности которых кажутся совершенно фантастическими. Даже представленные на рис. 14.1 структуры из самых простых однослойных углеродных нанотрубок могут (в зависимости от структуры и точной ориентации атомов углерода) являться либо проводящими (как металлы), либо полупроводниковыми материалами. Учитывая то, что свойства CNT могут дополнительно регулироваться условиями роста, конкретными схемами соединения и т. п., понятно, что они представляют собой новый класс уникальных материалов для полупроводниковой техники вообще и для датчиков в частности. Углеродные нанотрубки находят самое неожиданное применение как в качестве независимых элементов структуры, так и в сочетании с другими, уже известными элементами.

Рис. 14.1. Углеродные нанотрубки могут образовывать множество структур, способными быть и проводниками (металлами), и полупроводниками (рисунок предоставлен Центром НАСА имени Эймса, Моффет Филд, Калифорния)

Эти серьезные и весьма перспективные открытия привели к тому, что за очень короткое время (примерно с 1997 по 2003 год) финансирование нанотехнологий многократно увеличилось [80] . Стремительный рост капиталовложений продолжается, и значительную его часть составляют вложения в развитие и производство разнообразных датчиков. По некоторым оценкам, к 2009 году объем рынка датчиков с использованием нанотехнологий может составить около 0,6 миллиарда долларов [81] , а под другим – даже 2,7 миллиарда долларов в 2008 году [82] . Конкретные показатели в данном случае не очень важны, поскольку несомненно речь идет о действительно перспективной и бурно развивающейся отрасли промышленности, связанной с новейшими научно-технологическими разработками.

14.1.1. Неотвратимое объединение

Исторически мы привыкли рассуждать о технологиях, оперируя привычными представлениями о различиях между материалами, устройствами и системами. Между тем развитие науки и техники за последние десятилетия явно свидетельствует о том, что происходит некий процесс сближения (или слияния) различных типов технологий. Например, во многих современных приборах уже сейчас трудно провести границу между оптической и микромеханической частью устройства. Эта тенденция явно расширяется, так как новейшие технологии (особенно в микроэлектронике) все чаще позволяют придавать некоторые требуемые свойства непосредственно в печатных схемах или материалах подложки, то есть «вводить» их внутрь устройства, что размывает по смыслу классические представления о различии между материалом и изготовляемым из него изделием. В так называемых микроэлектромеханических системах (МЭМС) используются весьма сложные и многофункциональные так называемые умные (или интеллектуальные) наноматериалы, которые часто и образуют то, что мы привыкли называть устройством. Как остроумно заметил один из основателей фирмы Nanosys Ларри Бок: «В нанотехнологии следует говорить о сложности не системы, а составляющего ее материала» [83] .

В настоящее время исследователи всерьез задумываются о том, какими новыми терминами и представлениями следует обозначать и описывать, например, процессы и явления, при которых нанометрические структуры (включающие в себя лишь очень небольшое число молекул и электронов) оказываются способны перерабатывать и хранить огромный объем информации. Для записи и получения информации иногда стали применяться методики, которые раньше использовались лишь для описания физического состояния отдельной молекулы (флуоресценция и т. п.) или даже положения отдельных звеньев полимерной цепочки. Эти принципиально новые подходы позволяют доводить плотность записи информации до фантастических пределов (1 триллиона бит на квадратный дюйм), которые не имеет смысла даже сравнивать с плотностью записи на современных магнитных носителях [84] .

Создание реальных технических устройств на этой основе представляет собой очень интересную задачу, но несомненным результатом внедрения новых методов станет массовое производство разнообразных «умных» и крошечных по размерам датчиков с ничтожным энергопотреблением. Процессы широкого внедрения нанодатчиков затронут многие области науки, техники, общественной жизни и т. п. Из наиболее очевидных областей применения можно отметить слежение за текущим состоянием самых разных систем (например, биологических или экологических), развитие космической техники и т. д.

Подготовка производства нанотехнологических датчиков естественным образом разделяется на отдельные задачи или этапы, включающие в себя получение необходимых материалов, изготовление или выращивание на их основе необходимых нанообъектов и, наконец, создание самого специфического датчика в виде конструкции с заданной функциональностью, правильной геометрией и т. п. Три указанных направления исследований (материалы, способы их обработки, создание самих датчиков) теоретически удобно описывать, пользуясь абстрактной трехмерной системой координат, показанной на рис. 14.2. При необходимости этот подход позволяет сводить в единое целое и анализировать разнородные данные по типам используемых материалов, методам обработки или синтеза и конкретным измерениям, осуществляемым датчиками. Положения точек в такой системе отвечают на основные вопросы любого производства (что? как? с какой целью?). Очевидно, что из определенного типа материалов можно изготовить разные виды датчиков, а требуемый параметр можно измерить различными датчиками на основе разных материалов.

Рис. 14.2. Схематическая связь между материалами, процессами их обработки и создаваемыми на этой основе датчиками

14.1.2. Методы обработки материалов

Читатель наверняка знаком с общим делением технологических процессов на нисходящие (сверху вниз) и восходящие (снизу вверх), поэтому мы не будем давать лишних пояснений. В последние десятилетия нисходящие технологии непрерывно развивались, что и привело к созданию микротехнологий, естественным образом переходящих в нанотехнологии. В настоящее время наиболее развитые технологии этого типа используются в электронике и позволяют создавать очень сложные интегральные схемы, используя литографию, травление и технику осаждения. Постепенно совершенствуя эти классические технологии, специалисты микроэлектроники добилась фантастических успехов. Достаточно упомянуть, что толщина «проводов» в современных микросхемах уже достигла 100 нанометров и продолжает уменьшаться. Миниатюризация сверху вниз используется и при создании весьма популярных сейчас МЭМС, причем очень часто новые устройства используются именно для дальнейшей миниатюризации деталей (подобно тому как на обычном токарном станке создаются детали для сборки значительно более мелких устройств).

Нанотехнологии вообще возникли в результате совершенствования и развития методов и процессов сверху вниз, которые дошли до своего практического предела, когда предметом манипуляций стали отдельные атомы и молекулы. Стоит вспомнить, однако, что в природе существуют и разнообразные восходящие (снизу вверх) процессы и методики, наиболее распространенной из которых является молекулярная самосборка (самоорганизация), когда при определенных условиях атомы и молекулы сами объединяются в более крупные структуры [85] . Это заставило ученых и технологов задуматься о возможности организации производства на основе самосборки или так называемой направленной сборки на атомномолекулярном уровне [86] . Регулирование таких процессов является исключительно сложной научно-технической задачей, поскольку требует от исследователя умения «выращивать» вещество требуемого вида в геометрически правильной форме и в заданных местах. Существует и возможность сочетания нисходящих и восходящих технологий, что дает проектировщикам дополнительные возможности для создания материалов, устройств и инструментов. Кроме того, при создании новых видов датчиков могут комбинироваться технологии разного уровня (например, микро– и нано-) или типа.

14.1.3. Разнообразие наноматериалов

Использование наноматериалов и структур предоставляет конструкторам много принципиально новых возможностей для создания датчиков, что обусловлено, прежде всего, следующим важным обстоятельством, имеющим прямое отношение к нанотехнологиям вообще. Строго говоря, большинство практически используемых датчиков (особенно химических и биологических) по своему назначению должны осуществлять две (в сущности, разные) задачи, а именно – выявлять в окружении молекулы определенного типа и каким-то образом преобразовывать полученную информацию (то есть сам факт выявления) в некий сигнал, передаваемый или регистрируемый достаточно просто и быстро. Нанотехнологии позволяют исследователям совершенно по-новому решать обе эти задачи, что предоставляет разработчикам неожиданные возможности, принципиально превосходящие те, которые предоставляли МЭМС и другие типы микродатчиков.

В связи с этим стоит отметить и то, что в нанотехнологиях пока (в силу молодости новой науки!) используются в основном лишь химически однородные типы материалов или структур. Ситуацию можно уподобить еще недавно существовавшей в обычном материаловедении, до появления так называемых композиционных материалов, представляющих собой сочетание разнородных физико-химических компонент или веществ (типа армированных стеклопластиков и т. д.). Нет никаких препятствий к созданию, изучению и использованию в будущем различных сочетаний разнородных наноматериалов. Как и в случае обычных, объемных материалов и веществ, мы можем получить большое число новых материалов (зачастую с неожиданными характеристиками), просто комбинируя имеющиеся вещества. Разумеется, число комбинаций стремительно увеличивается при создании композиций из возрастающего числа веществ, однако даже для двух типов материалов количество возможных сочетаний выглядит внушительно, что и показано на рис. 14.3. Увеличение числа используемых веществ одновременно создает новые возможности для физико-химической обработки материала и его потенциального применения, поэтому можно ожидать, что в ближайшие годы мы станем свидетелями создания разнообразных композиционных материалов, разрабатываемых специально для производства нанодатчиков с новыми функциями и возможностями.

Рис. 14.3. Возможные бинарные сочетания различных нанообъектов при создании композиционных материалов. В верхнем ряду представлены так называемые нульмерные (0-D) наноматериалы, во втором – одномерные (1-D), в третьем – двухмерные (2-D), а в нижнем – трехмерные (3-D). Сочетания этих объектов позволяют теоретически говорить о 28 возможных типах композиционных материалов

14.1.4. Новые типы инструментов и приборов

Отдельного рассмотрения заслуживает следующий аспект развития нанотехнологий вообще и датчиков в частности. В настоящее время благодаря развитию и применению новейших физических методов (типа синхротронного излучения и ядерного магнитного резонанса) можно легко установить структуру многих сложных молекул. Проблема состоит в том, что простое знание об атомарной структуре на наноуровне является зачастую недостаточным, поскольку для исследований (и для работы датчиков в особенности) необходимо оценить степень взаимодействия атомов и обеспечить преобразование полученной информации в выработку соответствующего сигнала, вызывающего срабатывание датчика, и т. д. Определение сил взаимодействия на атомно-молекулярном уровне является очень сложной задачей, поскольку их пока невозможно определить экспериментально, а можно лишь рассчитать, используя весьма сложные программы и алгоритмы. Поэтому новейшие типы нанотехнологических датчиков могут работать лишь при условии существенной «поддержки» в виде достаточно мощных компьютеров с соответствующим программным обеспечением. Уже сейчас в нанонауке широко используются вычислительные методы молекулярной динамики, квантовой химии и т. п., а в будущем такие методы могут стать важным средством создания разнообразных датчиков, основанных на использовании нанотехнологий [87] .

14.2. Реальное состояние исследований в настоящее время

Всеобщий ажиотаж относительно блестящих перспектив нанотехнологий не должен скрывать того простого факта, что разработка и внедрение нанодатчиков требуют от исследователей решения еще очень многих сложных проблем. Некоторые из них относятся к конкретным научным задачам (в физике, химии, биологии и т. д.), а некоторые – к техническим, производственным и организационным. Например, любое использование наноустройств подразумевает их совмещение с уже существующими макроскопическими устройствами и приборами для обеспечения контроля над потоками вещества, энергии и информации. Даже простая калибровка нанодатчиков (или наноустройств вообще) представляет собой трудную задачу, поскольку речь идет об анализе очень небольшого количества измеряемых или реагирующих веществ. Кроме того, нельзя забывать, что общие размеры новых датчиков будут определяться не самими измерительными структурами и устройствами (которые при использовании нанотехнологий являются пренебрежимо малыми), а размерами сопутствующего и вспомогательного оборудования, в которое по-прежнему должны входить какие-то запоминающие и вычислительные устройства, радиочипы и (что особенно важно!) источники питания и антенны. С этими проблемами уже давно сталкивались разработчики микродатчиков, и использование нанотехнологий в некоторых случаях лишь усложнило их решение и показало сложность возникших задач.

14.2.1. Реальные проблемы проектирования нанодатчиков

Как отмечалось чуть выше, многие проблемы развития нанодатчиков просто повторяют те, с которыми разработчики сталкивались и продолжают сталкиваться при создании устройств, которые раньше именовались мини– или микродатчиками. В первую очередь речь идет об обеспечении интерфейса, то есть переходника между микроскопическим устройством и макроскопической системой регистрации. Наличие любого интерфейса автоматически подразумевает существование потоков (в термодинамическом смысле) электрических, механических, химических и других величин, не говоря уже о «шумах», связанных с процессами переноса. Работа любого датчика основана именно на регистрации таких потоков, поэтому, естественно, проблема детектирования особенно усложняется, когда они являются очень слабыми, то есть когда речь идет о регистрации ничтожных химических, электрических или акустических сигналов. Часто исследователям при регистрации сигналов от очень малых систем приходится применять крупногабаритное оборудование, позволяющее немного снизить уровень шумов (например, за счет понижения температуры и т. п.).

Анализ состава и состояния потоков особенно важен для химических и биологических датчиков, действие которых основано на быстром опознавании и регистрации состава сложных газовых и жидких сред. Разработчики таких устройств постоянно озабочены тем, что высокочувствительные и тщательно «спланированные» на наноуровне регистрирующие поверхности (именно они выступают часто в качестве интерфейса) могут легко разрушаться не только под воздействием регистрируемых соединений, но и просто под воздействием температуры, внешнего давления и т. п. С другой стороны, нанотехнологии предлагают уникальную возможность создания и практического использования огромного числа датчиков широкого профиля, то есть создание распределенной системы, в которой часть нанодатчиков может постоянно уничтожаться в процессе эксплуатации (образно говоря, погибать) без снижения эффективности общей способности системы к отслеживанию ситуации.

14.2.2. Риски коммерциализации

Развитие любой научно-технической идеи через инженерную разработку к производству коммерческого продукта представляет собой очень сложный многоступенчатый процесс при любых масштабах создаваемых устройств, но это общее правило особенно справедливо для внедрения новейших нанотехнологических технологий. Проблема коммерциализации наноизделий не сводится к обычному недоверию к новым товарам и процессам, а частично обусловлена тем, что исходные наноматериалы остаются пока достаточно дефицитными, и это, естественно, приводит к высокой стоимости производства новых систем или устройств. Постепенно цены на исходные материалы понижаются, однако существующая ситуация не позволяет малым компаниям быстро развертывать производство и получать прибыль, необходимую для дальнейшего развития. С конкретными проблемами коммерциализации нанодатчиков читатель может ознакомиться, прочитав один из последних обзоров по этой теме [88] .

Поделиться:
Популярные книги

Солнце мертвых

Атеев Алексей Григорьевич
Фантастика:
ужасы и мистика
9.31
рейтинг книги
Солнце мертвых

Возвышение Меркурия. Книга 2

Кронос Александр
2. Меркурий
Фантастика:
фэнтези
5.00
рейтинг книги
Возвышение Меркурия. Книга 2

Поцелуй Валькирии - 3. Раскрытие Тайн

Астромерия
Любовные романы:
любовно-фантастические романы
эро литература
5.00
рейтинг книги
Поцелуй Валькирии - 3. Раскрытие Тайн

Том 11. Былое и думы. Часть 6-8

Герцен Александр Иванович
11. Собрание сочинений в тридцати томах
Проза:
русская классическая проза
5.00
рейтинг книги
Том 11. Былое и думы. Часть 6-8

Сотник

Ланцов Михаил Алексеевич
4. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Сотник

Возвращение Безумного Бога

Тесленок Кирилл Геннадьевич
1. Возвращение Безумного Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Возвращение Безумного Бога

Жена неверного ректора Полицейской академии

Удалова Юлия
Любовные романы:
любовно-фантастические романы
4.25
рейтинг книги
Жена неверного ректора Полицейской академии

Студиозус 2

Шмаков Алексей Семенович
4. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
5.00
рейтинг книги
Студиозус 2

АН (цикл 11 книг)

Тарс Элиан
Аномальный наследник
Фантастика:
фэнтези
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
АН (цикл 11 книг)

Толян и его команда

Иванов Дмитрий
6. Девяностые
Фантастика:
попаданцы
альтернативная история
7.17
рейтинг книги
Толян и его команда

Аристократ из прошлого тысячелетия

Еслер Андрей
3. Соприкосновение миров
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Аристократ из прошлого тысячелетия

Надуй щеки! Том 5

Вишневский Сергей Викторович
5. Чеболь за партой
Фантастика:
попаданцы
дорама
7.50
рейтинг книги
Надуй щеки! Том 5

Печать мастера

Лисина Александра
6. Гибрид
Фантастика:
попаданцы
технофэнтези
аниме
фэнтези
6.00
рейтинг книги
Печать мастера

До захода солнца

Эшли Кристен
1. Трое
Любовные романы:
любовно-фантастические романы
эро литература
5.00
рейтинг книги
До захода солнца