Новый ум короля: О компьютерах, мышлении и законах физики
Шрифт:
Вспомним рассмотренную в главе 1(подгл. «Железо» и «софт», прим.38) «машину для телепортации». Ее работа было основана на принципиальной возможности собрать на удаленной от нас планете полную копию тела и головного мозга какого-нибудь человека. Интригующе интересно предположить, что человеческое сознание может зависеть от некоторых аспектов квантового состояния. Если это так, то квантовая теория запрещала бы нам изготовление копии этого «сознания» без разрушения состояния оригинала — и тем самым можно было бы разрешить «парадокс» телепортации. Возможность существенного влияния квантовых эффектов на функционирование головного мозга будет рассмотрена в двух заключительных главах.
Спин фотона
Рассмотрим теперь «спин» фотона и его связь со сферой Римана. Фотоны действительно обладаютспином, но поскольку они всегда движутся со скоростью
Это явление легче всего понять в терминах волновой картины света. Здесь нам понадобится предложенный Максвеллом способ рассмотрения света как комбинации осциллирующих электрического и магнитного полей. На рис. 6.26 изображен плоскополяризованныйсвет. Электрическое поле осциллирует в плоскости, называемой плоскостью поляризации, а магнитное поле осциллирует в такт с электрическим, но в ортогональной плоскости.
Рис. 6.26.Плоскополяризованная электромагнитная волна
Каждый фрагмент поляроида пропускает свет, плоскость поляризации которого направлена вдоль структуры поляроида. Когда структура второго поляроида ориентирована так же, как структура первого, то весь свет, прошедший сквозь первый поляроид, проходит и сквозь второй. Но когда структуры двух поляроидов образуют прямой угол, то второй поляроид отсекает весь свет, прошедший сквозь первый поляроид. Если же два поляроида ориентированы друг относительно друга под некоторым углом , то второй поляроид пропускает долю, равную
cos 2 ,
света, прошедшего сквозь первый поляроид.
В корпускулярной картине мы должны считать, что каждый индивидуальный фотонобладает поляризацией. Первый поляроид действует как измеритель поляризации, давая ответ ДА, если фотон действительно поляризован в соответствующем направлении. В этом случае фотону разрешается пройти сквозь поляроид. Если же фотон поляризован в ортогональном направлении, то измерение первым поляроидом даст ответ НЕТ, и фотон будет поглощен. (В данном случае «ортогональность» в гильбертовом пространстве соответствует прямому углумежду направлениями в обычном пространстве!) Предположим, что фотон проходит сквозь первый поляроид, после чего второй поляроид задает ему соответствующий вопрос, но уже относительно некоторого другого направления. Угол между этими двумя направлениями равен , как в упомянутом выше случае. Тогда мы имеем cos 2 в качестве вероятноститого, что фотон пройдет сквозь второй поляроид при условии, что он уже прошел сквозь первый поляроид.
Где же здесь появляется сфера Римана? Чтобы получить полный набор состояний поляризации, описываемый комплексными числами, нам необходимо рассмотреть круговуюи эллиптическуюполяризацию. Для классической волны эти разновидности поляризации представлены на рис. 6.27.
Рис. 6.27.Электромагнитная волна с круговой поляризацией. (Эллиптическая поляризация занимает промежуточное положение между плоской (рис. 6.26) и круговой (рис. 6.27) поляризацией.)
При
Чтобы понять, как набор возможных поляризаций снова образует сферу Римана, представим себе фотон, который движется вертикально вверх. Северный полюс теперь представляет состояние | R ) — правовинтовой спин. Это означает, что электрический вектор движущегося фотона вращается против часовой стрелки относительно вертикали (если смотреть сверху). Южный полюс представляет состояние | L ) — левовинтовойспин. (Фотоны можно представлять вращающимися наподобие ружейной пули, либо слева направо, либо справа налево.) Общее спиновое состояние | R ) + q | L ) представляет собой комплексную линейную комбинацию двух состояний | R ) и | L ) и соответствует точке на сфере Римана, помеченной значением q . Чтобы установить связь между значением q и эллипсом поляризации, мы прежде всего извлечем из q квадратныйкорень и получим другое комплексное число р :
р = q
Затем нанесем р вместо q на сферу Римана и рассмотрим плоскость, проходящую через центр сферы перпендикулярно прямой, соединяющей центр сферы с точкой р . Эта плоскость пересекает сферу по окружности, проектируя которую на горизонталь, мы получаем эллипс поляризации (рис. 6.28) [160] .
160
Комплексное число — р подходит так же хорошо, как и р , в качестве квадратного корня из q , и дает тот же самый эллипс поляризации. Квадратный корень обусловлен тем, что фотон — безмассовая частица со спином, равным единице, т. е. вдвоебольшим фундаментальной единицы h / 2 . Для гравитона (еще не открытого кванта гравитации) спин равен двум , т. е. вчетверобольше фундаментальной единицы, поэтому нам в приведенном выше описании понадобился бы корень четвертойстепени из q .
Рис. 6.28. Сфера Римана (но теперь со значениями q ) также описывает состояния поляризации фотона. (Вектор, направленный в точку q , называется вектором Стока .)
Сфера Римана со значениями q по-прежнему описывает совокупность поляризованных состояний фотона, но квадратный корень р из q дает нам ее пространственную реализацию.