Новый ум короля: О компьютерах, мышлении и законах физики
Шрифт:
| 0 )| 1 ) — | 0 )| 1 ).
(Для нормировки оба члена можно было бы умножить на общий множитель 1 / 2 .) Это состояние правильно изменяет знак при перестановке первой частицы со второй, но теперь состояния | 0 )| 1 ) и | 0 )| 1 ) уже не независимы. Вместо этих двух состояний нам теперь разрешается иметь только одно состояние! Всего существует
1 / 2 ( 10 х 9 ) = 45
состояний
Всего таких состояний ( 10 х 9 х 8 ) / 6= 120 , поэтому для задания трехфермионного состояния необходимы 120 комплексных чисел.
Для пары тождественных бозонов независимые базисные состояния бывают двоякого рода, а именно такие, как
| 0 )| 1 ) + | 1 )| 0 ),
и такие, как
| 0 )| 0 )
(которое теперь разрешается), что дает всего 10 х 11 / 2 = 55 базисных состояний. Таким образом, для задания двухбозонных состояний требуется 55 комплексных чисел. Для трех бозонов существуют базисные состояния трех различных типов и для задания каждого из них требуются ( 10 х 11 х 12 ) / 6= 220 комплексных чисел, и так далее.
Разумеется, для того, чтобы донести до читателя основные идеи, я рассматривал упрощенную ситуацию. Более реалистическое описание потребовало бы целый континуум состояний с определенным положением, но существенные идеи остаются такими же. Еще одно небольшое осложнение связано с наличием спина . Для каждой частицы со спином 1 / 2 (такая частица с необходимостью является фермионом) в каждом положении существовало бы 2 возможных состояния. Обозначим их «^» (спин «вверх») и «V» (спин «вниз»). Тогда в рассматриваемой нами упрощенной ситуации мы получаем не 10, а 20базисных состояний
а в остальном рассуждать следует так же, как было сделано только что (таким образом, для двух таких фермионов необходимо взять ( 20 х 19 ) / 2= 190 чисел, для трех — ( 20 х 19 х 18 ) / 6= 1140 и т. д.).
В главе 1 я упоминал о том, что согласно современной теории, если частицу из тела человека поменять местами с аналогичной частицей из кирпича в стене его жилища, то ничего не произойдет. Если бы эта частица была бозоном, то, как мы знаем, состояние | ) действительно осталось бы совершенно не изменившимся. Если бы эта частица была фермионом, то состояние | ) в результате обмена частиц перешло бы в — | ) физически
Картина физического мира, которую представила нам квантовая механика, — совсем не то, к чему мы привыкли в классической физике. Но придержите вашу шляпу — в квантовом мире есть гораздо более странные вещи!
«Парадокс» Эйнштейна, Подольского и Розена
Как упоминалось в начале этой главы, некоторые из идей Альберта Эйнштейна сыграли фундаментальную роль в развитии квантовой теории. Напомним, что именно Эйнштейн впервые ввел еще в 1905 году понятие «фотон» — квант электромагнитного поля — из этого понятия впоследствии выросла идея дуализма волна-частица. (Эйнштейну отчасти принадлежит и понятие «бозон», как и многие другие идеи, сыгравшие центральную роль в квантовой теории поля.) Тем не менее Эйнштейн так и не смог принять теорию, в которую впоследствии развились эти идеи, полагая, что такая теория не может быть описанием физического мира. Хорошо известно отвращение, которое Эйнштейн питал к вероятностному аспекту квантовой теории, и которое он в сжатой форме сформулировал в одном из писем к Максу Борну в 1926 году (письмо цитируется в книге: Пайс [1982], с. 443):
«Квантовая механика производит очень внушительное впечатление. Но внутренний голос говорит мне, что это еще не настоящая „вещь“. Квантовая теория дает очень многое, но вряд ли способна приблизить нас к разгадке секрета Старика. Я глубоко убежден, что Он не играет в кости».
Однако, как оказывается, еще больше, чем такой физический индетерминизм, Эйнштейна беспокоило кажущееся отсутствие объективностив том, каким образом должна описываться квантовая теория. В моем изложении квантовой теории я пытался подчеркнуть, что описание мира, даваемое этой теорией, в действительности вполне объективно, хотя и кажется часто весьма странным и противоречащим интуиции. С другой стороны, Бор, по-видимому, считал, что квантовое состояние системы (между измерениями) не обладает настоящей физической реальностью, а действует лишь как свод «знаний некоторого субъекта» о рассматриваемой системе. Но разве различные наблюдатели не могут обладать различными знаниями о системе, тогда волновая функция должна была бы быть чем-то существенно субъективным, или «целиком существовать в уме физика»? Наша замечательно точная физическая картина мира, создававшаяся на протяжении многих столетий, не должна испариться целиком; поэтому Бору пришлось рассматривать мир на классическом уровне как действительно обладающий объективной реальностью.
Но в состояниях на квантовом уровне , которые, казалось бы, лежат в основе всего, никакой «реальности» он не усматривал.
Такая картина была неприемлема для Эйнштейна, который был глубоко убежден в том, что объективный физический мир должен действительно существовать, даже на микроскопических масштабах квантовых явлений. В своих многочисленных дискуссиях с Бором Эйнштейн пытался (но неудачно) показать, что квантовой картине присущи внутренние противоречия, и что за квантовой теорией должна стоять какая-то более глубокая структура, возможно, более похожая на картины классической физики. Возможно, вероятностное поведение квантовых систем является проявлением статистических эффектов более малых компонентов, или частей, системы, о которых мы не располагаем непосредственным знанием. Последователи Эйнштейна, в особенности Давид Бом, развили высказанную им идею о «скрытых переменных», согласно которой должна существовать некоторая вполне определенная реальность, но параметры, точно определяющие систему, не доступны нам непосредственно, и квантовые вероятности возникают из-за того, что значения этих параметров неизвестны до измерения.