Чтение онлайн

на главную - закладки

Жанры

Новый ум короля: О компьютерах, мышлении и законах физики
Шрифт:

Согласуется ли теория скрытых переменных со всеми наблюдаемыми фактами квантовой физики? Похоже, что ответ на этот вопрос должен быть утвердительным, но только если эта теория по существу нелокальна в том смысле, что скрытые параметры должны иметь возможность мгновенно влиять на элементы системы в сколь угодно далеких областях! Такая ситуация не понравилась бы Эйнштейну, особенно в связи с возникающими трудностями в специальной теории относительности. К ним я еще вернусь в дальнейшем. Наиболее успешная теория скрытых переменных известна как модель де Бройля (де Бройль [1956], Бом [1952]). Я не буду обсуждать здесь эти модели, так как в этой главе моя цель состоит только в том, чтобы дать общий обзор стандартной квантовой теории, а не различных соперничающих с ней положений. Если кто-нибудь жаждет физической реальности, но готов пожертвовать детерминизмом, то

самой стандартной теории вполне достаточно. Он просто рассматривает вектор состояния как описывающий «реальность» — обычно изменяющийся во времени в соответствии с гладкой детерминистской Uпроцедурой, но время от времени совершающий причудливые «прыжки» в соответствии с Rпроцедуройвсякий раз, когда эффект увеличивается до классического уровня. Но проблема нелокальности и явных трудностей с относительностью сохраняются. Рассмотрим некоторые из них.

Предположим, что у нас имеется физическая система, состоящая из двух подсистем Аи В. Пусть, например, Аи В— две различные частицы. Предположим, что для состояния частицы А существуют две (ортогональные) альтернативы | ) и | ), а для состояния частицы В— две (ортогональные) альтернативы | ) и | ). Как мы уже видели выше, общее комбинированное состояние системы будет не просто произведением (конъюнкцией « и») некоторого состояния частицы Аи некоторого состояния частицы В, а суперпозицией («плюс») таких произведений. (Тогда мы говорим, что Аи Вкоррелированы.) Пусть состояние системы представимо суперпозицией

| )| ) + | )| ).

Произведем измерение типа «да или нет» над частицей А, которое отличает состояние | ) ( ДА) от состояния | ) ( НЕТ). Что произойдет при этом с частицей B ? Если измерение даст ответ ДА, то результирующим должно быть состояние

| )| ),

а если измерение даст ответ НЕТ, то

| )| )

Таким образом, измерение, производимое нами над частицей А, заставляет состояние частицы Визмениться скачком: перейти в | ), если получен ответ ДА, и перейти в | ), если получен ответ НЕТ! Частица Вне обязательно должна находиться поблизости от частицы А; частицы могут быть разделены расстоянием в несколько световых лет. И все же частица Вскачком переходит из одного состояния в другое одновременно с измерением, производимым над частицей А!

«Но постойте», — вполне может сказать читатель. К чему все эти подозрительные «скачки»? Почему не происходит просто следующее: представьте себе ящик, о котором известно, что в нем лежит один черный и один белый шар. Предположим, что некто извлек шары из ящика и, не глядя, отнес их в противоположные углы комнаты. Затем он взглянул на один шар и обнаружил, что он белый (аналог упоминавшегося выше состояния | )), тогда — алле-оп! — другой шар оказывается черным (аналог состояния | ))! С другой стороны, если первый шар оказался черным (аналог состояния | )), то в мгновение ока состояние второго шара скачком переходит в «заведомо белый» (аналог состояния | )). Никто из читателей или читательниц в здравом уме не станет упорно приписывать внезапный переход второго шара из состояния «неопределенности» в состояние «определенно черный» или «определенно белый» некоторому таинственному нелокальному «влиянию», мгновенно доходящему до него от первого шара в тот самый момент, когда наблюдатель рассмотрел первый шар.

Но природа действует еще более изощренно. Действительно, в приведенном выше примере можно было бы представить, что система уже «знала», что частица Внаходилась в состоянии | ), а частица А— в состоянии | ) (или что частица Внаходилась в состоянии | ), а частица А— в состоянии | )) до того, как над Абыло произведено измерение; и только экспериментаторусостояния

частиц не были известны. Обнаружив, что частица Анаходится в состоянии | ), он просто заключил, что частица Внаходится в состоянии | ). Такая точка зрения была бы «классической» — как в локальной теории скрытых переменных — и никаких скачкообразных физическихпереходов из одного состояния в другое в действительности не происходит. (Все это происходит лишь в уме экспериментатора!) Согласно такой точке зрения любая часть системы заранее «знает» результаты любого эксперимента, который мог бы быть произведен над ней. Вероятности возникают только из-за отсутствия такого знания у экспериментатора. Достойно удивления, что, как оказывается, эта точка зрения не срабатываетдля объяснения всех загадочных нелокальных вероятностей, возникающих в квантовой теории!

Чтобы убедиться в этом, рассмотрим ситуацию, аналогичную изложенной выше, но такую, что выбор измерения, производимого над системой А, остается нерешенным до тех пор, пока системы Aи Bне окажутся пространственно разделенными. Тогда, как представляется, факт выбора измерения мгновенно окажет влияние на поведение системы B! Этот кажущийся парадоксальным «мысленный эксперимент» ( ЭПР– типа) был предложен Альбертом Эйнштейном, Борисом Подольским и Натаном Розеном [1935]. Я опишу его вариант, предложенный Давидом Бомом [1951]. То, что никакое локальное «реалистическое» (т. е. типа скрытых переменных или «классического типа») описание не может дать правильные квантовые вероятности, следует из одной замечательной теоремы Джона С. Белла (Белл [1987], Рэй [1986], Сквайерс [1986]).

Предположим, что две частицы со спином 1 / 2 , которые я буду называть электрономи позитроном(т. е. антиэлектроном), возникли в результате распада одной частицы со спином 0 в некоторой точке (центре), и что они движутся от центра в противоположных направлениях (рис. 6.30).

Рис. 6.30.Частица с нулевым спином распадается на две частицы с половинным спином — электрон Б и позитрон Р. Представляется, что измерение спина одной из частиц со спином 1/2 мгновенно фиксирует состояние спина другой частицы

Из закона сохранения углового момента следует, что спины электрона и позитрона в сумме должны давать 0 , так как угловой момент исходной частицы был равен 0 . Отсюда следует, что когда мы измеряем спин электрона в каком-нибудь направлении, то, какое направление мы бы ни выбрали, спин позитрона окажется направленным в противоположнуюсторону! Электрон и позитрон могут быть разделены расстоянием в несколько миль или даже световых лет, тем не менее кажется, что сам выбор измерения, производимого над одной частицей, мгновеннофиксирует ось спина другой частицы!

Попытаемся теперь выяснить, как квантовый формализм приводит нас к такому заключению. Представим состояние двух частиц с суммарным нулевым угловым моментом вектором состояния | Q ). Тогда имеем соотношение

| Q ) = | E^) | PV) — | EV) | P^),

где Еозначает электрон, а Р— позитрон. Здесь все описывается в терминах направлений спина «вверх/вниз». Мы видим, что полное состояние является линейной суперпозицией электрона со спином вверх и позитрона со спином вниз, а также электрона со спином вниз и позитрона со спином вверх. Таким образом, если мы измеряем спин электрона в направлении «вверх/вниз» и обнаруживаем, что спин направлен вверх, то мы должны скачком перейти к состоянию | E^) | PV), поэтому спиновое состояние позитрона должно быть направлено вниз. С другой стороны, если мы обнаруживаем, что спин электрона направлен вниз, то состояние скачком переходит в | EV) | P^), поэтому спин позитрона направлен вверх.

Поделиться:
Популярные книги

Матабар. II

Клеванский Кирилл Сергеевич
2. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар. II

Архил...?

Кожевников Павел
1. Архил...?
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Архил...?

Жандарм

Семин Никита
1. Жандарм
Фантастика:
попаданцы
альтернативная история
аниме
4.11
рейтинг книги
Жандарм

На границе империй. Том 8. Часть 2

INDIGO
13. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 8. Часть 2

Проводник

Кораблев Родион
2. Другая сторона
Фантастика:
боевая фантастика
рпг
7.41
рейтинг книги
Проводник

Эволюционер из трущоб. Том 5

Панарин Антон
5. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Эволюционер из трущоб. Том 5

Кротовский, сколько можно?

Парсиев Дмитрий
5. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Кротовский, сколько можно?

Отверженный. Дилогия

Опсокополос Алексис
Отверженный
Фантастика:
фэнтези
7.51
рейтинг книги
Отверженный. Дилогия

Имя нам Легион. Том 3

Дорничев Дмитрий
3. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 3

Отморозок 4

Поповский Андрей Владимирович
4. Отморозок
Фантастика:
попаданцы
фантастика: прочее
5.00
рейтинг книги
Отморозок 4

Идеальный мир для Лекаря 21

Сапфир Олег
21. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 21

Невеста инопланетянина

Дроздов Анатолий Федорович
2. Зубных дел мастер
Фантастика:
космическая фантастика
попаданцы
альтернативная история
5.25
рейтинг книги
Невеста инопланетянина

Здравствуй, 1984-й

Иванов Дмитрий
1. Девяностые
Фантастика:
альтернативная история
6.42
рейтинг книги
Здравствуй, 1984-й

Экзо

Катлас Эдуард
2. Экзо
Фантастика:
боевая фантастика
постапокалипсис
8.33
рейтинг книги
Экзо