Чтение онлайн

на главную - закладки

Жанры

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Шрифт:
4- e правило действий со степенями:

x 0= 1 для всякого положительного числа x.

2-е правило можно использовать и для того, чтобы придать смысл отрицательным степеням. Разделим 12 3на 12 5. Согласно 2-му правилу, ответ должен быть равен 12 2. Но при этом он равен и (12x12x12)/(12x12x12x12x12), что после сокращения трех множителей 12 в числителе и знаменателе даст 1/12 2.

5-е правило действий со степенями:

x – n=1 /x n(в частности, x 1= 1/ x).

3-е

правило наводит нас на мысль о том, что же должны означать дробные степени. Как можно поступить с величиной x 1/3? Например, возвести ее в куб, тогда по 3-му правилу должно получиться просто x. Значит, x 1/3есть просто кубический корень из x. (Определение «кубического корня из x»: это число, куб которого равен x). 3-е правило теперь говорит нам, какой смысл имеет всякая дробная степень; x 2/3— это кубический корень из x, возведенный в квадрат (или, что одно и то же, кубический корень из x 2).

6-е правило действий со степенями:

х m/nесть корень n-й степени из х m.

Поскольку 12 — это 3x4, получаем, что 12 5равно (3x4)x(3x4)x(3x4)x(3x4)x(3x4). Это можно переписать как (3x3x3x3x3)x(4x4x4x4x4). Короче говоря: 12 5= 3 5x4 5. Такое верно и в общем случае:

7-е правило действий со степенями:

(xxy) n = x nxy n.

А что насчет возведения xв иррациональную степень? Что могло бы означать 12 2, или 12 , или 12 e ? Здесь мы снова попадаем в царство анализа. Вспомним про ту последовательность из главы 1.vii, которая сходилась к 2. Она выглядела так: 1/ 1, 3/ 2, 7/ 5, 17/ 12, 41/ 29, 99/ 70, 239/ 169, 577/ 408, 1393/ 985, 3363/ 2378, … Продолжая эту последовательность достаточно далеко, можно подобраться к 2 сколь угодно близко. А из 6-го правила, которое говорит о значении всякой дробной степени, понятно, что же представляет собой число 12, возведенное в каждую из этих дробных степеней. Разумеется, число 12 1равно просто 12, а 12 3/2— это квадратный корень из 12 в кубе; 41,569219381…. Далее, 12 7/5— это корень пятой степени из 12 в седьмой степени, что равно 32,423040924…. Таким же образом, 12 17/12равно 33,794038815…, 12 41/29равно 33,553590738…, 12 99/70равно 33,594688567… и т.д. Как мы видим, эти дробные степени числа 12 сходятся к некоторому числу — на самом деле к числу 33,588665890…. Поскольку сами дроби при этом сходятся к 2, очень похоже на правду, что 12 2= 33,588665890….

Итак, задавшись положительным числом x, можно возводить его вообще в любую степень — положительную, отрицательную, дробную или иррациональную. При этом будут выполняться приведенные выше правила действий со степенями, поскольку мы ввели определения таким образом, чтобы именно это и гарантировать! На рисунке 5.1 показаны графики функций x aдля различных чисел aв интервале от -2 до 8. Отдельно отметим нулевую степень х 0, представляющую собой горизонтальную прямую на высоте 1 над осью x— то, что математики называют «постоянной функцией» (а медсестры в реанимации называют «остановкой»). Для любого аргумента xзначение этой функции равно 1. Стоит еще обратить внимание, как быстро возрастают целочисленные степени x 2, x 3, x 8, а также — что имеет более прямую связь с главной темой этой книги — как медленно возрастают дробные положительные степени, такие как x 0,5.

Рисунок 5.1.Степенные

функции x aдля различных чисел a.

III.

Возведение чисел в степени на первый взгляд выглядит похожим на умножение. Умножение сначала представляют как кратное сложение: 12x5 = 12 + 12 + 12 + 12 + 12, затем на следующем уровне сложности объясняется, что такое 12x5 1/ 2где на самом деле содержится кое-что еще, кроме кратного умножения. Похожим образом обстоит дело и с возведением в степень. Определить 12 5совсем легко, это кратное умножение: 12x12x12x12x12. Чтобы справиться с

, требуются дополнительные объяснения, подобные тем, что предложены в предыдущем разделе.

Как я уже говорил, математики обожают обращать выражения. Скажем, пусть задано выражение величины Pчерез Q. Отлично, давайте посмотрим, можно ли выразить Qчерез P. И здесь аналогия между умножением и возведением в степень нарушается. Обратить умножение легко: если x = axb,то a = x:bи b = x:a.Деление полностью решает проблему обращения умножения.

Аналогия нарушается, потому что axbвсегда и без единого исключения равно axb, но, к сожалению, неверно (за исключением случайных совпадений), что a b = b a(единственный случай, когда это так для целочисленных степеней и не совпадающих aи b— это 2 4= 4 2). Например, 10 2есть 100, но 2 10есть 1024. Поэтому, если мы собираемся обратить x = a b, то нам понадобятся две разные вещи: способ выразить aчерез xи bи, отдельно, способ выразить bчерез xи a.Первое — не проблема. Возведем обе части в степень 1/ bи в соответствии с 3-м правилом получим a = x 1/b(что согласно 6-му правилу означает, что aесть корень b-й степени из x). Но как же выразить bчерез xи а? Правила действий со степенями не дают здесь никаких подсказок.

Здесь-то и появляются логарифмы. Ответ таков: bесть логарифм xпо основанию a.Это просто-напросто определение логарифма. Логарифм числа xпо основанию a(обычно записываемый как log a x) определяется как такое число b, для которого верно равенство x = a b.Это дает целое семейство логарифмических функций: логарифм xпо основанию 2, логарифм xпо основанию 10 (который более старшие читатели могут припомнить в качестве облегчающего вычисления средства, — его проходили в старших классах школы примерно до 1980 года) и т.д. Можно было бы представить их все в виде графиков, как это сделано для графиков функций х 0на рисунке 5.1 .

Я не буду этого делать, потому что мне глубоко безразличны все члены логарифмического семейства, кроме одного — логарифма по основанию e, где e— необычайно важное, хотя и иррациональное число 2,71828182845…. Логарифм по основанию e— единственный, который меня интересует, и единственный, которым мы будем пользоваться в этой книге. На самом деле я больше не буду говорить «логарифм по основанию e», а буду говорить просто «логарифм». [37] Так что же такое логарифм числа x? По данному выше определению, это такое число b, для которого делается верным равенство x = e b.

37

log ex =ln x. (Примеч. перев.)

Поделиться:
Популярные книги

Лолита

Набоков Владимир Владимирович
Проза:
классическая проза
современная проза
8.05
рейтинг книги
Лолита

Я подарю тебе ребёнка

Малиновская Маша
Любовные романы:
современные любовные романы
6.25
рейтинг книги
Я подарю тебе ребёнка

Убивать чтобы жить 3

Бор Жорж
3. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 3

Небо для Беса

Рам Янка
3. Самбисты
Любовные романы:
современные любовные романы
5.25
рейтинг книги
Небо для Беса

Сердце Дракона. Том 11

Клеванский Кирилл Сергеевич
11. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
6.50
рейтинг книги
Сердце Дракона. Том 11

Печать мастера

Лисина Александра
6. Гибрид
Фантастика:
попаданцы
технофэнтези
аниме
фэнтези
6.00
рейтинг книги
Печать мастера

Идеальный мир для Лекаря 19

Сапфир Олег
19. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 19

Калибр Личности 1

Голд Джон
1. Калибр Личности
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Калибр Личности 1

Идеальный мир для Лекаря 2

Сапфир Олег
2. Лекарь
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 2

Волчья воля, или Выбор наследника короны

Шёпот Светлана
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Волчья воля, или Выбор наследника короны

Вечный. Книга I

Рокотов Алексей
1. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга I

Спасение 6-го

Уолш Хлоя
3. Парни из школы Томмен
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Спасение 6-го

Ротмистр Гордеев

Дашко Дмитрий Николаевич
1. Ротмистр Гордеев
Фантастика:
фэнтези
попаданцы
альтернативная история
5.00
рейтинг книги
Ротмистр Гордеев

Нечто чудесное

Макнот Джудит
2. Романтическая серия
Любовные романы:
исторические любовные романы
9.43
рейтинг книги
Нечто чудесное