Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Шрифт:
Разумеется, путешествие может оказаться неблизким. Кривая ln xповторно пересекает кривую x 0,3чуть к востоку от точки x = 379; она повторно пересекает кривую x 0,1только после того, как пройдет через точку x = 332 105; и она повторно пересекает кривую x 0,001только после прохождения точки x= 3 430 631 121 407 801. Если бы мы нарисовали график функции xв степени одна триллионная (т.е. x 0,000000000001), то она выглядела бы до безобразия плоской. Настолько, что ее нелегко было бы отличить от функции «остановки сердца», которая имеет высоту 1 над осью x, — ничего похожего на изящно восходящую кривую логарифмической функции. Логарифмическая кривая пересекла бы ее на малюсеньком
Картина такова, как будто ln xстарается быть функцией x 0. Конечно, это не x 0: для любого положительного числа выражение x 0определяется равным числу 1, согласно 4-му правилу, и соответствующий график, как мы видели, — это «остановка сердца». Но хотя функция ln xи не есть x 0, она умудряется при достаточно больших xподнырнуть под функцию x со сколь угодно малым и оставаться там уже навсегда. [39]
39
Замечание: математики по соглашению используют букву (это эпсилон, пятая буква греческого алфавита) для обозначения «некоторого очень маленького числа».
В действительности дело обстоит даже еще более странным образом. Рассмотрим утверждение: «функция ln xрано или поздно будет расти медленнее, чем x 0,001, и x 0,000001, и x 0,000000001, и …» Представим себе, что мы возвели все это утверждениев некоторую степень — скажем, в сотую. (Это, надо признать, не очень строгая математическая операция, но она приводит к верному результату.) После применения 3-го правила утверждение будет выглядеть так: «функция (ln x) 100рано или поздно будет расти медленнее, чем x 0,1, и x 0,0001, и x 0,0000001, и …». Другими словами, если логарифм растет медленнее, чем любая степень буквы x, то это же верно и для любой степени функцииln x. Каждая из функций (ln x) 2, (ln x) 3, (ln x) 4, …, (ln x) 100, … растет медленнее, чем любая степень x. Независимо оттого, сколь велико Nи сколь мало , график функции (ln x) N в конце концов поднырнет под график функции x и останется там, внизу.
Такое нелегко себе представить. Функции (ln x) N растут быстро — и даже оченьбыстро. И тем не менее, если на рисунке 5.3 отойти достаточно далеко на восток, то рано или поздно, при некотором впечатляюще большом аргументе, каждая из них опустится ниже кривой x 0,3, x 0,2, x 0,1и вообще любой кривой из этого семейства, какую вы только потрудитесь нарисовать. Придется отправиться на восток в окрестность точки x= 7,9414 x10 3959, прежде чем (ln x) 100опустится ниже, чем x 0,3; и однако же это случится.
Кое-что из сказанного понадобится нам прямо сейчас, а кое-что останется на потом. Но все сказанное важно для понимания Гипотезы Римана, и я призываю вас проконтролировать некоторые основные моменты — проверить, как вы их понимаете, прежде чем двигаться дальше. Для этого сгодится карманный калькулятор. Можете, например, найти ln 2 (он равен 0,693147…) и ln 3 (равный 1,098612…) и удостовериться, что при сложении их действительно
Ну а теперь вернемся к базельской задаче.
Эйлерово решение базельской задачи прекрасно иллюстрирует сделанное в разделе I этой главы замечание, что поиск решений в замкнутом виде расширяет понимание, позволяя проникнуть в суть вещей. Эйлерово решение дало не только замкнутое выражение для ряда из обратных квадратов, но в качестве побочного продукта еще и замкнутые выражения для рядов
Когда Nравно двум, ряд сходится к 2/6, как уже было сказано; когда Nравно 4, ряд сходится к 4/90; когда Nравно 6, ряд сходится к 6/945 и т.д. Метод Эйлера дает ответ для каждого четного N.В более поздней публикации он сам добрался до N= 26, когда ряд сходится к числу 1 315 862 26/11 094 481 976 030 578 125.
А что, если Nнечетное? Полученный Эйлером результат ничего про это не говорит. Как не говорит и ни один другой результат, полученный за последующие 260 лет. Нет никаких идей относительно замкнутого выражения (если таковое вообще существует) ни для
40
Доказательство принадлежит греко-французскому математику Роже Апери, которому в тот момент исполнился 61 год — это по поводу мнения, что математики никогда ничего не создают после тридцатилетнего возраста. В честь этого достижения сумма — которая в действительности равна 1,2020569031595942854… — стала известна как «число Апери». Оно имеет некоторые приложения в теории чисел. Случайным образом выберем три положительных целых числа. Какова вероятность, что у них нет общего делителя? Ответ: около 83 процентов, точнее, 0,83190737258070746868… — число, обратное числу Апери.
Итак, к середине XVIII века немало математиков задумывались над бесконечным рядом из выражения (5.1) . Точные значения — замкнутый вид — были известны для всех четных чисел N, тогда как для нечетных можно было получать приближенные значения, беря сумму достаточного числа членов. Не будем забывать, что, когда Nравно 1, соответствующий ряд становится просто гармоническим рядом, который расходится. В таблице 5.1 приведены значения выражения (5.1) (которое, напомним, есть
N | Значение выражения (5.1) |
---|---|
1 | (нет значения) |
2 | 1,644934066848 |
3 | 1,202056903159 |
4 | 1,082323233711 |
5 | 1,036927755143 |
6 | 1,017343061984 |
Таблица 5.1.
Эта таблица похожа на один из тех «мгновенных снимков» некоторой функции, которые мы рассматривали в главе 3.iv. Так примерно дело и обстоит. Вспомним утверждение Гипотезы Римана, приведенное во вступлении.