Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Шрифт:
В основе всего этого лежала твердая как гранит религиозная вера. Эйлер рос кальвинистом и всегда был привержен этой вере. Его отец, как и отец Римана, был пастором в деревенской церкви, и Эйлеру, как и Риману, изначально предназначалась церковная карьера. Сообщают, что во время жизни в Берлине «он каждый вечер собирал всю семью целиком и читал главу из Библии, сопровождая чтение проповедью». И это происходило ровно тогда, когда при дворе, согласно Маколею, «главнейшие темы разговоров вертелись вокруг нелепости религиозных убеждений любого толка». Трудолюбивый, благочестивый, стоический, преданный своей семье, живущий в простоте и просто изъясняющийся — неудивительно, что Фридрих его недолюбливал. Но настало время перейти от дней к трудам и взглянуть на первый великий триумф Эйлера — базельскую задачу.
Глава 5. Дзета-функция Римана
Выразить в замкнутом виде бесконечный ряд
Базельская задача [35] названа в честь швейцарского города, в университете которого профессорами математики один за другим были двое братьев Бернулли — Якоб (с 1687 по 1705 год) и Иоганн (с 1705 по 1748 год). Мы упоминали в главе 1.iii, что оба брата Бернулли нашли доказательства расходимости гармонического ряда. В книге, где он опубликовал сначала доказательство брата, а потом и свое, Якоб Бернулли сформулировал приведенную выше задачу и обратился ко всем, кто знает, как с ней разобраться, с просьбой сообщить ему ответ. (Я очень скоро объясню, что значит «выразить в замкнутом виде».)
35
Сформулирована Пьетро Менголи в 1644 г. Менголи в то время был профессором в университете Болоньи, так что правильнее было бы говорить «болонская задача». Но именно Якоб Бернулли впервые предложил эту задачу вниманию широкой общественности, и название «базельская задача» закрепилось.
Заметим, что ряд, фигурирующий в этой задаче, — будем называть его «базельским рядом» — не слишком далек от гармонического ряда. Каждый член в нем, собственно говоря, равен квадрату соответствующего члена в гармоническом ряде. А возведение в квадрат числа, меньшего единицы, дает число еще меньшее: квадрат одной второй уменьшает ее до одной четвертой. И чем меньшее число возводится в квадрат, тем сильнее выражен этот эффект: одна четвертая лишь немного меньше одной второй, но квадрат одной десятой дает одну сотую, которая намногоменьше, чем одна десятая.
Каждый член в базельском ряду, таким образом, меньше соответствующего члена в гармоническом ряду, и по мере продвижения вперед они делаются все меньше и меньше. Поскольку гармонический ряд лишь «едва-едва» расходится, вполне реальны надежды на то, что базельский ряд, составленный из меньших и даже много меньших величин, сойдется. Вычисление подсказывает, что на самом деле так и есть. Сумма первых десяти членов равна 1,5497677…, сумма ста членов составляет 1,6349839…, тысячи — 1,6439345…, а десяти тысяч — 1,6448340…. Действительно, впечатление такое, что ряд сходится к какому-то числу в окрестности 1,644 или 1,645. Но к какому?
В подобных ситуациях математиков не устраивает просто найти приближение, особенно когда рассматриваемый ряд сходится медленно, как в данном случае. (Сумма 10 000 членов все еще на 0,006 процента отличается от значения полной, бесконечной суммы, которая равна 1,6449340668….) Выражается ли ответ дробным числом, скажем, 9108/ 5537или 560 837 199/ 340 948 133? Или он имеет более сложный вид, может быть, в него входят корни, например, 46/ 17, или же корень пятой степени из 11 983/ 995, или же корень восемнадцатой степени из 7776 [36] ? Чему равенответ? Неспециалист решил бы, что вполне достаточно знать это число с точностью до нескольких знаков после запятой. Но нет, математики желают знать его точно,если только это возможно. Не просто потому, что они одержимы навязчивой идеей, но и потому, что по опыту знают: получение точногоответа нередко открывает ранее запертые двери и проливает свет на более глубокие математические вопросы. Математический профессиональный термин для такого точного представления — это «замкнутый вид». А десятичное приближение, неважно, насколько точное, — «незамкнутый вид». Число 1,6449340668… —
36
187776 = 1,64495160…. (Примеч. перев.)
Базельская задача была поставлена так: найти замкнутый вид ряда из обратных квадратов. Задача была в конце концов побеждена в 1735 году, через 46 лет после своей постановки, и сделал это молодой Леонард Эйлер, трудившийся в далеком Санкт-Петербурге. Потрясающий ответ имеет вид 2/6. Да, это «то самое» , магическое число, равное 3,14159265…, — отношение длины окружности к ее диаметру. Что же оно делает в задаче, которая не имеет ни малейшего отношения не только к окружностям, но и вообще к геометрии?! Современных математиков это не так уж изумляет, они привыкли, что можно встретить в математике где угодно, но в 1735 году этот ответ произвел сильное впечатление.
Базельская задача подводит нас к дзета-функции — объекту, с которым мы имеем дело в Гипотезе Римана. Но прежде чем мы сможем познакомиться с дзета-функцией, надо вспомнить кое-что из математических основ: степени, корни и логарифмы.
Степени — это прежде всего повторяющееся умножение. Число 12 3— это 12x12x12, где перемножаются три сомножителя, а 12 5— это 12x12x12x12x12, где сомножителей пять. Что получится, если умножить 12 3на 12 5? Это будет (12x12x12)x(12x12x12x12x12), что, конечно, составляет 12 8. Надо просто сложить степени: 3 + 5 = 8. В этом и состоит первое великое правило действий со степенями.
x mxx n = x m + n.
(Давайте я здесь прямо и скажу, что во всем этом разделе мы будем иметь дело только с положительными значениями буквы x. Возводить в степень нуль — пустая трата времени, а возведение в степень отрицательных чисел приводит к занятным проблемам, о которых мы поговорим позднее.)
Что будет, если разделить 12 5на 12 3? То есть вычислить (12x12x12x12x12)/(12x12x12). Можно сократить три множителя 12 сверху и снизу, и в результате останется 12x12, т.е. 12 2. Как видно, это все равно что вычесть степени.
x m: x n = x m - n.
А теперь возведем 12 5в куб: (12x12x12x12x12)x(12x12x12x12x12)x(12x12x12x12x12) дает 12 15. На этот раз степени перемножаются.
(x n) m= x mn.
Таковы три самых важных правила, которые говорят нам, как обращаться со степенями. В дальнейшем мы будем ссылаться на них как на «правила действий со степенями» без дополнительных объяснений. Однако это пока не все правила. Нам потребуется еще несколько, потому что до сих пор у нас были степени, выражаемые положительными целыми числами. А как обстоит дело с отрицательными и дробными степенями? А со степенью нуль?
Начав с последнего, заметим, что если x 0вообще что-нибудь будет означать, то хорошо бы добиться согласованности с теми правилами, которые у нас уже есть, потому что они являются прямым выражением здравого смысла. Возьмем во 2-м правиле nравным m.Тогда в правой части, как видно, получится x 0. А в левой части будет x m: x m.Но когда число делится само на себя, получается единица.