Чтение онлайн

на главную - закладки

Жанры

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Шрифт:

Вычитание устранило из бесконечной суммы все члены с четными числами. Остались только члены, в которые входят нечетные числа.

Вспоминая решето Эратосфена, умножим теперь обе части порченного равенства на

, руководствуясь тем, что 3 — это первое выжившее число в правой части:

Теперь вычтем это выражение из того, которое мы получили ранее. При вычитании левых частей будем рассматривать

как неделимую
штуку, — просто как некоторое число (каковым оно, конечно, и является при любом заданном s). Вся эта штука входит в левую часть одного выражения с множителем 1, а в левую часть другого — с множителем
. Вычитая, получаем

Из бесконечной суммы исчезли все члены, содержащие числа, кратные тройке! Первое выжившее число — это теперь 5.

Умножив теперь обе части полученной формулы на

, будем иметь

А теперь, вычитая это равенство из предыдущего и рассматривая на этот раз

как неделимую конструкцию, видим, что в левую часть одного выражения она входит с множителем 1, а в левую часть другого — с множителем
. Вычитание дает

Все слагаемые с числами, кратными 5, исчезли при вычитании, и первое выжившее число в правой части — это 7.

Замечаете сходство с решетом Эратосфена? Но вы должны заметить и отличие. При работе с исходным решетом мы оставляли сами простые числа в неприкосновенности, удаляя только их кратные — числа, полученные из них умножением на 2, 3, 4, …. Здесь же при вычитании мы устраняем из правой части как само простое число, так и все его кратные.

Если продолжать описанную процедуру до достаточно большого простого числа, скажем, до 997, мы получим

Теперь заметим, что если s— любое число, большее единицы, то правая часть этой формулы совсем ненамного больше чем просто 1. Например, при s= 3 правая часть этой формулы равна 1,00000006731036081534… Поэтому выглядит довольно правдоподобным предположение, что если продолжать указанный процесс до бесконечности, то для любого числа sбольшего 1 получится следующий результат (7.1):

< image id="eq_71" l:href="#" />

где в левой части содержится ровно одно выражение в скобках для каждогопростого числа, причем эти скобки продолжаются налево без конца. Теперь поделим обе части полученного выражения последовательно на каждую из этих скобок (7.2):

IV.

Это — Золотой Ключ. Чтобы он предстал перед нами во всей красе, давайте немного его почистим. Дроби с дробными знаменателями нравятся мне ничуть не больше, чем вам, а кроме того, есть еще полезные математические приемы, которые позволят нам сэкономить на наборе формул.

Прежде всего вспомним 5-е правило действий со степенями: оно говорит, что a – Nесть 1/ a Nи a – 1есть 1/ a.Поэтому выражение (7.2) можно записать поаккуратнее:

(s)= (1 - 2 – s ) – 1x(1 - 3 – s ) – 1x(1 - 5 – s ) – 1x(1 - 7 – s ) – 1x(1 - 11 – s ) – 1x….

Есть

даже еще лучший способ. Вспомним про обозначение , введенное в главе 5.viii. Когда мы складываем компанию слагаемых единообразной структуры, их сумму можно записать коротко, используя знак ; у этого имеется эквивалент для умножения, когда сомножители имеют единообразную структуру: тогда используется знак . Это заглавная греческая буква «пи», используемая в этом качестве из-за слова «product» (произведение). Используя знак , выражение (7.2) можно переписать таким образом:

Читается это так: «Дзета от sравна взятому по всем простым числам произведению от величины, обратной единице минус pв степени минус s». Подразумевается, что маленькое pпод знаком означает «по всем простым». [55] Вспоминая определение функции (s)в виде бесконечной суммы, можно подставить эту сумму в левую часть и получить

Золотой Ключ (7.3):

55

Математика допускает бесконечные произведения точно так же, как она допускает бесконечные суммы. Как и бесконечные суммы, некоторые из бесконечных произведений сходятся к определенному значению, а некоторые расходятся к бесконечности. Данное произведение сходится, когда sбольше 1. Например, при s= 3 оно равно

8/ 7x 27/ 26x 125/ 124x 343/ 342x 1331/ 1330x 2197/ 2196x 4913/ 4912x 6859/ 6858x….

Сомножители становятся все ближе и ближе к 1, причем делают это очень быстро, так что каждое следующее умножение — это умножение на нечто, лишь на самую малую малость отличающееся от 1, что, конечно, меняет результат очень незначительно. Прибавим к чему-нибудь нуль: никакого эффекта. Умножим что-нибудь на единицу: никакого эффекта. В бесконечной сумме члены должны достаточно быстро приближаться к нулю, чтобы прибавление их сказывалось мало; в бесконечном произведении они должны достаточно быстро приближаться к 1, чтобы умножение них сказывалось мало.

И сумма в левой части, и произведение в правой части простираются до бесконечности. Это, кстати, дает еще одно доказательство того факта, что простые числа никогда не кончаются. Если бы они вдруг кончились, то произведение в правой части содержало бы конечное число множителей, и тем самым мы его немедленно вычислили бы как какое-то число при абсолютно любом аргументе s. [56] При s = 1, однако, левая часть представляет собой гармонический ряд из главы 1, сложение членов которого «уводит нас в бесконечность». Поскольку бесконечность в левой части не может равняться конечному числу в правой, количество простых чисел с необходимостью бесконечно.

56

Все-таки кроме s= 0. (Примеч. перев.)

V.

Что же такого — как вы, должно быть, недоумеваете — замечательного, такого неординарного и вызывающего имеется в выражении (7.3) , что оно удостоилось столь высокопарного имени?

Окончательно это прояснится только в одной из последующих глав, когда мы на самом деле повернем Золотой Ключ. На данный же момент главное, что должно производить впечатление (на математиков оно, во всяком случае, производит большое впечатление), — это что в левой части выражения (7.3) мы имеем бесконечную сумму, пробегающую все положительные целые числа 1, 2, 3, 5, 6, …, а в правой его части — бесконечное произведение, пробегающее все простые числа 2, 3, 5, 7, 11, 13, ….

Поделиться:
Популярные книги

Дважды одаренный. Том II

Тарс Элиан
2. Дважды одаренный
Фантастика:
городское фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Дважды одаренный. Том II

Измена. Тайный наследник

Лаврова Алиса
1. Тайный наследник
Фантастика:
фэнтези
5.00
рейтинг книги
Измена. Тайный наследник

Ваше Сиятельство 7

Моури Эрли
7. Ваше Сиятельство
Фантастика:
боевая фантастика
аниме
5.00
рейтинг книги
Ваше Сиятельство 7

Разбуди меня

Рам Янка
7. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
остросюжетные любовные романы
5.00
рейтинг книги
Разбуди меня

Тактик

Земляной Андрей Борисович
2. Офицер
Фантастика:
альтернативная история
7.70
рейтинг книги
Тактик

Секретарша генерального

Зайцева Мария
Любовные романы:
современные любовные романы
эро литература
короткие любовные романы
8.46
рейтинг книги
Секретарша генерального

Росток

Ланцов Михаил Алексеевич
2. Хозяин дубравы
Фантастика:
попаданцы
альтернативная история
фэнтези
7.00
рейтинг книги
Росток

Измена. Мой заклятый дракон

Марлин Юлия
Любовные романы:
любовно-фантастические романы
7.50
рейтинг книги
Измена. Мой заклятый дракон

Третий. Том 3

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий. Том 3

Идеальный мир для Лекаря 4

Сапфир Олег
4. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 4

Лорд Системы

Токсик Саша
1. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
4.00
рейтинг книги
Лорд Системы

Тринадцатый

NikL
1. Видящий смерть
Фантастика:
фэнтези
попаданцы
аниме
6.80
рейтинг книги
Тринадцатый

Последний из рода Демидовых

Ветров Борис
Фантастика:
детективная фантастика
попаданцы
аниме
5.00
рейтинг книги
Последний из рода Демидовых

Отверженный III: Вызов

Опсокополос Алексис
3. Отверженный
Фантастика:
фэнтези
альтернативная история
7.73
рейтинг книги
Отверженный III: Вызов