Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Шрифт:
Выражение (7.3) — Золотой Ключ — на самом деле называется «эйлерова формула произведения». [57] Она впервые увидела свет, хотя и в несколько иной обработке, в статье Variae observationes circa series infinorum, написанной Леонардом Эйлером и опубликованной Санкт-Петербургской академией в 1737 году. (Заглавие переводится как «Различные наблюдения о бесконечных рядах». Прочитайте еще раз оригинальное латинское название и убедитесь в справедливости моего тезиса из главы 4.viii о легкости, с которой читается Эйлерова латынь.) Точная формулировка утверждения о Золотом Ключе в той работе такова.
57
Золотой Ключ — это исключительно моя номенклатура. «Эйлерова формула произведения» — стандартное название. Стандартные же названия для двух ее частей — «ряд Дирихле» для бесконечной суммы и «эйлерово произведение» для бесконечного произведения. Строго
Si ex serie numerorum primorum sequens formetur expressio
erit eius valor aequalis summae huius seriei
Латынь означает: «Если из последовательности простых чисел образовать следующее выражение…, то его значение будет равно сумме ряда…» Опять же, если вы знакомы с десятком основных латинских окончаний (-orum — родительный падеж; -etur — пассивный залог сослагательного наклонения настоящего времени и т.п.), то эйлерова латынь вас не отпугнет.
Делая наброски идей, из которых выросла данная книга, я сначала полез в математические тексты у себя на книжной полке, чтобы найти доказательство Золотого Ключа, подходящее для читателей, не являющихся специалистами. Я остановился на одном, показавшемся мне подходящим, и включил его в книгу. На более поздней стадии работы над книгой мне подумалось, что стоит, пожалуй, проявить авторское тщание, и я отправился в научную библиотеку (в данном случае — замечательное отделение по наукам, промышленности и бизнесу Нью-Йоркской публичной библиотеки в центре Манхэттена) и отыскал оригинальную статью в собрании трудов Эйлера. Данное им доказательство Золотого Ключа занимает десяток строк и куда проще и изящнее, чем доказательство, которое я извлек из своих учебников. Поэтому я заменил первоначально выбранное доказательство эйлеровым. Доказательство, приведенное в разделе iii этой главы, по сути и есть эйлерово доказательство. Я знаю, что это писательский штамп, но он от этого не перестает быть верным: нет ничего лучше, чем обратиться к первоисточнику.
После того как мы увидели, что же собой представляет Золотой Ключ, пришло время готовиться к тому, чтобы его повернуть. Для этого понадобится вспомнить некоторое количество математики, включая кусочек дифференциального и интегрального исчислений. В оставшейся части данной главы я приведу все, что нужно знать из дифференциального и интегрального исчисления, чтобы понять Гипотезу Римана и оценить ее значение. А затем, обратив необходимость в удобство, я воспользуюсь этими сведениями, чтобы представить улучшенный вариант ТРПЧ — вариант, имеющий более непосредственное отношение к работе Римана.
Обучение дифференциальному и интегральному исчислению традиционно начинается с графика. График, с которого мы начнем, — тот же, что и изображение логарифмической функции в главе 5.iii; теперь он воспроизведен на рисунке 7.1. Представьте себе, что вы — очень маленький (бесконечно малый, если получится представить) гомункулус, взбирающийся вверх по графику логарифмической функции слева направо. Если вы начали свое путешествие из какой-го точки, находящейся недалеко от нуля, то сначала путь вашего восхождения очень крутой и вам требуется скалолазное снаряжение. Но по мере продвижения ландшафт становится более пологим. К тому времени, как вы достигнете аргументов в районе 10, вы можете распрямиться и просто шагать, как на прогулке.
Рисунок 7.1.Функция ln x.
Степень крутизны кривой изменяется от точки к точке. Но в каждой точке наклон кривой имеет определенное численное значение — точно так же, как ваша машина, когда вы разгоняетесь, имеет определенную скорость в каждый данный момент времени — скорость, которую вы фиксируете, бросая взгляд на спидометр. Через мгновение она может слегка измениться, но в каждый определенный момент времени она имеет некоторое определенное значение. Точно так же для любого аргумента в своей области определения (которую составляют все числа, большие нуля) логарифмическая функция имеет некоторый определенный наклон.
Как нам измерить этот наклон и что это такое? Сначала давайте определим «наклон» наклонной прямой линии. Это подъем по вертикали, деленный на смещение по горизонтали. Если, пройдя по горизонтали расстояние в 5 единиц, вы поднялись на 2 единицы вверх, то, значит, наклон равен двум пятым, т.е. 0,4 (рис. 7.2).
Рисунок 7.2.Наклон.
Чтобы найти наклон некоторой кривой в произвольной точке на ней, построим прямую линию, касающуюся
Если вы когда-нибудь слушали лекции по дифференциальному исчислению, то все это вам хорошо знакомо. Дифференциальное исчисление в действительности начинается с такого утверждения: из любой функции fможно произвести другую функцию g, которая выражает наклон функции fпри любом ее аргументе. Если f— это ln x, то g— это 1/ x. Произведенная таким образом функция называется, как ни странно, производной функции f. Например, 1/ x— это производная функции ln x. Если вам дали какую-то функцию f, то процесс нахождения ее производной называется дифференцированием.
Дифференцирование — действие, которое подчиняется некоторым простым правилам. Например, оно прозрачно для нескольких основных арифметических операций. Если производная функции f— это g,то производная функции 7 f —это 7 g.(Так что производная от 7•ln xравна 7/ x.) Производная суммы f + g —это производная функции fплюс производная функции g.Правда, все не совсем так для умножения: производная произведения fи g неравна произведению производной функции fна производную функции g. [58]
58
Надо полагать, что автор сознательно (и, скорее всего, после некоторых размышлений) остановился перед формулировкой так называемого правила Лейбницадля производной произведения. Последуем его примеру и не будем приводить это замечательное правило, обладающее глубоким математическим смыслом, выходящим за рамки собственно математического анализа. (Примеч. перев.)
Единственные функции, кроме логарифма, производные которых нам понадобятся в этой книге, — это простые степенные функции x N. Приведем без доказательства тот факт, что для любого числа Nпроизводная функции x Nесть функция Nx N-1.Таблица 7.1 дает некоторые производные степенных функций.
Функция | Производная |
---|---|
x – 3 | – 3 x – 4 |
x – 2 | – 2 x – 3 |
x – 1 | – x – 2 |
x 0 | 0 |
x 1 | 1 |
x 2 | 2 x |
x 3 | 3 x 2 |