Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Шрифт:
Есть еще истории… однако я слишком отклонился от темы. [154] Я собирался рассказать о формуле Римана-Зигеля.
Первые три строки в таблице 16.1 — это вклады Грама, Бэклунда и Хатчинсона, полученные как результат упорного труда с карандашом, бумагой и томами математических таблиц. Это был тяжелый вычислительный труд — значения дзета-функции посчитать нелегко. Основной метод, называемый «суммированием Эйлера-Маклорена», был развит около 1740 года Леонардом Эйлером и, независимо от него, шотландским математиком Колином Маклореном. Он основан на аппроксимации интегралов длинными и сложными суммами. Несмотря на свою чрезвычайную трудоемкость, этот метод оставался наилучшим из всех предложенных. Грам сам в течение примерно года пробовал работать с несколькими другими методами, но без большого успеха.
154
Всего
Суть открытия, которое сделал Карл Зигель, изучая Nachlass Римана в геттингенской библиотеке, такова: в ходе исследований, приведших к статье 1859 года Бернхард Риман разработал гораздо лучший метод вычисления нулей и, более того, применил его и сам нашел первые три нуля! Никаких следов этого в статье 1859 года не видно. Все осталось скрытым в Nachlass.
Вот что пишет Хэролд Эдвардс: «Риман в действительности обладал средствами, позволявшими вычислять ( 1/ 2+ ti) с впечатляющей точностью». [155] Однако Риман удовлетворился достаточно грубыми вычислениями, поскольку точное знание о положении нулей не играло существенной роли в его работе. Он получил мнимую часть первого нуля (см. выше) равной 14,1386 и проверил, что это действительно первыйнуль; второй и третий он вычислил с точностью до одной или двух сотых.
155
В книге профессора Эдвардса приведены несколько фотографий страниц из Nachlass, по которым можно судить о масштабе работы, предпринятой Зигелем.
Открытие формулы Римана, которая после обработки и опубликования ее Зигелем стала формулой Римана-Зигеля, сильно упростило работу по получению нулей. На этой формуле держались все значимые исследования до середины 1980-х годов. Например, классическая статья Эндрю Одлыжко 1987 года «О распределении интервалов между нулями дзета-функции», о которой еще много будет сказано в главе 18.v, опиралась на формулу Римана-Зигеля. На основе этой работы Одлыжко и Арнольд Шонхаге позднее развили и реализовали некоторый улучшенный алгоритм, но все тем не менее основано на формуле Римана-3игеля. [156]
156
В 2004 г. Ксавье Гурдон, используя метод Одлыжко-Шонхаге, проверил, что десять триллионов нетривиальных нулей дзета-функции лежат на критической прямой. Это вычисление показывает, что Гипотеза Римана верна по крайней мере до высоты T, равной 2,4 триллиона. Читателю этой книги может быть небезынтересно, что «техническую» основу метода Гурдона составляет некоторый прием (из теории функций, а не теории чисел), называемый интерполяцией Чебышева. (Примеч. перев.)
Карл Зигель, кстати, не был евреем, и его напрямую не задевали ограничительные законы в начальный период нацизма. Однако он не терпел нацистов и уехал из Германии в 1940 году, начав работать в Институте высших исследований в Принстоне. Он вернулся в Германию в 1951 году и завершил карьеру в качестве профессора в том самом Геттингене, где за двадцать лет до того архивы позволили ему увидеть, как яркую вспышку, невероятную мощь ума, скрывавшегося за тихой застенчивостью Бернхарда Римана.
Глава 17. Немного алгебры
Этой книге следовало бы содержать куда больше алгебры, чем в конце концов в ней оказалось. Мы уделяли основное внимание Бернхарду Риману и его работе о простых числах и дзета-функции. Эта работа относится к теории чисел и анализу, и поэтому в нашем рассказе преобладали именно эти темы. Однако современная математика, как уже отмечалось, стала довольно алгебраической. В данной главе читателю предлагаются алгебраические сведения, которые могут потребоваться для понимания двух важных подходов к Гипотезе Римана.
Как и главы 7 и 15, эта глава состоит из двух частей. В разделах II и III обсуждаются основы теории полей, а оставшаяся часть главы посвящена теории операторов. Теория полей важна потому, что она ужепозволила доказать нечто, сильно напоминающее Гипотезу Римана. Многие исследователи полагают, что теория полей предлагает наиболее многообещающее направление исследования исходной, классической Гипотезы Римана. Теория операторов приобрела важность после знаменательных и даже романтических
157
Например, С. Дж. Паттерсон в своей книге «Введение в теорию дзета-функции Римана» в параграфе 5.11 пишет: «Наиболее убедительные аргументы, которые имеются к настоящему моменту в пользу справедливости Гипотезы Римана, — это справедливость аналогичного утверждения для дзета-функций, связанных с кривыми над конечными полями. Формальное сходство настолько впечатляюще, что трудно представить себе, как оно могло бы не приводить к еще более далеко идущим совпадениям» (курсив мой. — Дж. Д.).
B математике слово «поле» имеет весьма конкретный смысл. Множество элементов образует поле, если эти элементы можно складывать, вычитать, перемножать и делить в согласии с обычными правилами арифметики — например, с правилом ax(b + c) = ab + ac.Результаты всех этих действий должны оставаться в поле.
Например, Nне является полем. Если попробовать из 7 вычесть 12, то получится результат, не лежащий в N. Аналогично обстоит дело и с Z— если поделить 12 на 7, то ответ не будет лежать в Z. Это не поля.
Но Q, Rи C— поля. Если складывать, вычитать, перемножать или делить друг на друга два рациональных числа, то получится другое рациональное число. То же самое с вещественными и комплексными числами. Они дают нам три примера поля. Ясно, что каждое из этих полей содержит бесконечное число элементов.
Несложно построить и другие бесконечные поля. Рассмотрим семейство всех чисел вида а + b2, где aи b —рациональные числа. Здесь bили равно нулю, или нет. Если bне равно нулю, то, поскольку число 2 не является рациональным, число а + b2 также не рациональное. Следовательно, это семейство содержит все рациональные числа (при нулевом b) и тучу весьма специальных иррациональных. Такие числа образуют поле. Сложение числа а + b2 с числом c + d2 дает (a + c) + (b + d)2, их вычитание дает (a - c) + (b - d)2, результат умножения есть (ac + 2 bd) + (ad + bc)2, а деление с использованием приема, подобного тому, который применяется при делении комплексных чисел, приводит к (ac - 2bd)/(c 2– 2d 2) + ((bc - ad)/(c 2– 2d 2))2. Поскольку aи bмогут быть вообще любыми рациональными числами, в этом поле бесконечно много элементов.
Поля не обязательно бесконечны. Простейшее из всех полей содержит всего два элемента, 0 и 1. Таблица сложения имеет вид 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 0. Таблица вычитания такова: 0 - 0 = 0, 0 - 1 = 1, 1 - 0 = 1, 1 - 1 = 0. (Можно заметить, что получающиеся результаты таковы же, как для сложения. В данном поле любой знак минус можно спокойно заменить знаком плюс!) Таблица умножения: 0x0 = 0, 0x1 = 0, 1x0 = 0, 1x1 = 1. Таблица деления: 0:1 = 0, 1:1 = 1, а деление на нуль запрещено. (Делить на нуль нельзя никогда.) Это абсолютно нормальное, а вовсе не тривиальное поле, и мы очень скоро не преминем им как следует воспользоваться. Математики называют его полем F 2.
На самом деле конечное поле можно построить для любого простого числа р и даже для любой степени любого простого числа. Если p— простое число, то имеется конечное поле из pэлементов, поле из p 2элементов, поле из p 3элементов и т.д. Более того, мы только что перечислили все возможные конечные поля. Их можно организовать в список: F 2, F 4, F 8, …, F 3, F 9, F 27, …, F 5, F 25, F 125, …; выписав их все, мы тем самым перечислим все возможности построения конечных полей.