Чтение онлайн

на главную - закладки

Жанры

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Шрифт:

Ошибкой было бы считать (как это порой делают начинающие), что конечные поля представляют собой просто переформулировку арифметики циферблата, описанной в главе 6.viii. Это верно только для полей, содержащих простое число элементов. А вот арифметика других конечных полей устроена более тонко. На рисунке 17.1, например, представлена арифметика циферблата — сложение и умножение — для циферблата с четырьмя отметками (т.е. 0, 1, 2 и 3). Эта система чисел и правил интересна и полезна, но она не является полем, поскольку нельзя разделить 1 ни на 3, ни на 2. (Если бы можно было разделить 1 на 2, то уравнение 1 = 2x xимело бы решение. А у него решения нет.) Математики называют это кольцом, что не лишено основания, коль скоро речь идет о циферблате. В кольце можно складывать, вычитать и умножать, но не всегда можно делить.

+ 0 1 2 3 x 0 1 2 3
0 0 1 2 3 0 0 0 0 0
1 1 2 3 0 1 0 1 2 3
2 2 3 0 1 2 0 2 0 2
3 3 0 1 2 3 0 3 2 1

Рисунок 17.1.Сложение

и умножение на циферблате с четырьмя отметками (другими словами, сложение и умножение выполняются по обычным правилам, после чего берутся остатки по модулю 4).

Конкретное кольцо, показанное на рисунке 17.1, имеет официальное обозначение Z/4 Z. Должен сознаться, что мне такое обозначение никогда не нравилось, так что на правах автора я изобрету для него свое собственное обозначение: CLOCK 4. [158] {4} Ясно, что можно построить такое кольцо для любого натурального числа N.В моих обозначениях оно будет называться CLOCK N .

158

Clock (англ). — часы. (Примеч. перев.)

Но поле F Nможно построить не для любого числа N, а только для простых чисел и их степеней. Для простого числа pсамого по себе поле F pвыглядит в точности как CLOCK p та же таблица сложения, та же таблица умножения. Однако для степени простого числа ситуация усложняется. На рисунке 17.2 показаны сложение и умножение (откуда, конечно, извлекаются вычитание и деление) в поле F 4. Видно, что F 4отличается от CLOCK 4.

+ 0 1 2 3 x 0 1 2 3
0 0 1 2 3 0 0 0 0 0
1 1 0 3 2 1 0 1 2 3
2 2 3 0 1 2 0 2 3 1
3 3 2 1 0 3 0 3 1 2

Рисунок 17.2.Сложение и умножение в конечном поле F 4.

Всякое

поле, конечное или бесконечное, имеет важный параметр — число, называемое характеристикой.Характеристика поля говорит о том, сколько раз надо прибавить единицу к самой себе, чтобы получить нуль. Если 1 + 1 + 1 + … = 0 (где берется Nслагаемых), то характеристика равна N.Понятно, что характеристика поля F 2равна 2. Чуть менее очевидно, хотя и без труда проверяется с помощью таблицы сложения на рисунке 17.2 , то, что характеристика поля F 4тоже равна 2. Такие поля, как Q, R, С, в которых никакое прибавление единицы к самой себе какое угодно количество раз никогда не даст в результате нуль, по определению имеют характеристику «нуль». (Вы могли бы подумать, что более логичной будет характеристика «бесконечность», и вы, возможно, правы, но имеются веские причины и для того, чтобы объявить характеристику нулевой.) Можно проверить, что характеристика любого поля есть или нуль, или некоторое простое число.

Поскольку мы имеем дело с алгеброй, элементы полей не обязаны быть числами. Алгебра позволяет работать с математическими объектами любого типа. Рассмотрим все многочлены (полиномиальные функции) любой заданной степени, т.е. все выражения вида ax n+ bx n-1+ cx n-2+ …, где a, b, cи т.д. — целые числа. Теперь образуем множество всех рациональных функций, другими словами, функций, являющихся отношением (ratio)двух многочленов. Получим поле. Приведем пример сложения в этом поле:

(Примерно этим и занимаются на уроках алгебры в старших классах.)

Коэффициенты многочленов не обязаны быть целыми. На самом деле можно позабавиться, сделав их элементами из конечного поля, такого как рассмотренное выше поле F 2. В качестве примера сложения, которое при этом получается, имеем

(При проверке этого равенства надо помнить, что в поле F 2выполнено 1 + 1 = 0, а потому x + x = 0, x 2 – x 2 = 0 и т.д.) Это поле будет называться полем рациональных функций над F 2. В нем, разумеется, бесконечно много элементов; лишь коэффициенты ограничены своей принадлежностью к конечному полю. Таким образом, можно использовать конечное поле для построения бесконечного. Заметим еще, что, поскольку 1 + 1 = 0, это поле имеет характеристику 2. Следовательно, и бесконечные поля могут иметь конечную характеристику.

Не имеет особого смысла спрашивать, что собой представляет xв последних двух примерах. Это символ, для манипуляций с которым у нас имеются строго определенные правила. С алгебраической точки зрения главное в этом и состоит. На самом деле почти наверняка ответ на данный вопрос звучит как « xпредставляет собой число». Однако алгебраисты куда больше интересуются тем, какого типа это число — каким семействам, каким группам, каким полям оно принадлежит и какие правила манипуляций с ним выполнены. Для аналитика же наше число а + b2 не слишком интересно. «Это просто вещественное число», — скажет аналитик. — «Ладно, алгебраическое число» (см. главу 11.ii), — если на него надавить. Но для алгебраиста, однако, оно представляет особый интерес постольку, поскольку относится к некоторому полю. Вообще алгебраисты и аналитики рассматривают не столько разные вещи, сколько аспекты одной и той же вещи. [159] {A8}

159

Попытаюсь выразить это в афористичной форме: алгебраистов заботит не столько то, чем являются вещи, сколько то, что с ними можно делать. Они — «отглагольные», а не «отсуществительные» люди. Другой интересный концептуальный взгляд на алгебру предложил сэр Майкл Атья в своей лекции в Филдсовском институте в Торонто в июне 2000 г. Тогда как геометрия с очевидностью имеет дело с пространством (говорил сэр Майкл, лауреат Филдсовской премии), алгебраисты имеют дело с временем. «Геометрия по существу статична. Я могу просто сидеть здесь и наблюдать, при этом может ничего не меняться, но это не мешает мне наблюдать. Алгебра, однако, имеет дело с временем, потому что там имеются операции, которые надлежит выполнять последовательно.» ( Шенитцер А., Атья М.Ф.Математика в двадцатом столетии. American Mathematical Monthly.Vol. 108. № 7.)

III.

Краткий взгляд на размах, мощь и красоту теории алгебраических полей — это все, на что нам здесь хватает места, хотя мы и вернемся ненадолго к полям, рассмотрев их под другим углом зрения в главе 20.v. Я привел здесь этот краткий обзор алгебраических сведений, потому что в 1921 году Артин в своей диссертации, которую он защищал в Лейпцигском университете, применил теорию полей для развития нового подхода к Гипотезе Римана. Соответствующий математический аппарат достаточно серьезен, и я расскажу о нем лишь очень бегло.

Поделиться:
Популярные книги

Идеальный мир для Лекаря 8

Сапфир Олег
8. Лекарь
Фантастика:
юмористическое фэнтези
аниме
7.00
рейтинг книги
Идеальный мир для Лекаря 8

Княжий человек

Билик Дмитрий Александрович
3. Бедовый
Фантастика:
юмористическая фантастика
городское фэнтези
мистика
5.00
рейтинг книги
Княжий человек

Имперец. Том 1 и Том 2

Романов Михаил Яковлевич
1. Имперец
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Имперец. Том 1 и Том 2

Купеческая дочь замуж не желает

Шах Ольга
Фантастика:
фэнтези
6.89
рейтинг книги
Купеческая дочь замуж не желает

Искатель 2

Шиленко Сергей
2. Валинор
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Искатель 2

Метатель. Книга 6

Тарасов Ник
6. Метатель
Фантастика:
боевая фантастика
попаданцы
постапокалипсис
рпг
фэнтези
фантастика: прочее
5.00
рейтинг книги
Метатель. Книга 6

Неверный

Тоцка Тала
Любовные романы:
современные любовные романы
5.50
рейтинг книги
Неверный

Держать удар

Иванов Дмитрий
11. Девяностые
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Держать удар

Мастер Разума III

Кронос Александр
3. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
5.25
рейтинг книги
Мастер Разума III

Тайны затерянных звезд. Том 2

Лекс Эл
2. Тайны затерянных звезд
Фантастика:
боевая фантастика
космическая фантастика
космоопера
фэнтези
5.00
рейтинг книги
Тайны затерянных звезд. Том 2

Вторая невеста Драконьего Лорда. Дилогия

Огненная Любовь
Вторая невеста Драконьего Лорда
Любовные романы:
любовно-фантастические романы
5.60
рейтинг книги
Вторая невеста Драконьего Лорда. Дилогия

На границе империй. Том 10. Часть 7

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 7

Отмороженный 10.0

Гарцевич Евгений Александрович
10. Отмороженный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Отмороженный 10.0

Чужая семья генерала драконов

Лунёва Мария
6. Генералы драконов
Фантастика:
фэнтези
5.00
рейтинг книги
Чужая семья генерала драконов