Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Шрифт:
Результаты оказались не полностью убедительными. Как сам Одлыжко весьма деликатно выразился в своей статье, «все полученные к настоящему моменту данные довольно неплохо согласуются с предсказаниями модели ГУА». Получилось несколько больше малых интервалов, чем это предсказывала модель ГУА. Тем не менее результаты Одлыжко произвели достаточное впечатление, чтобы привлечь внимание исследователей из нескольких различных областей. Дальнейшая работа позволила прояснить ситуацию с несоответствиями, отмеченными в статье 1987 года, и «гипотеза Монтгомери о парных корреляциях» стала законом Монтгомери-Одлыжко. [173]
173
Самой ранней ссылкой на закон Монтгомери-Одлыжко (именно под таким названием), которую мне удалось найти, является статья Николаса Каца и Питера Сарнака, опубликованная в 1999 г. Слово «закон» здесь, конечно, понимается в физическом, а не в математическом
Распределение интервалов между последовательными нетривиальными нулями дзета-функции Римана (в правильной нормировке) статистически тождественно распределению собственных значений ГУА-оператора.
О природе полученных Одлыжко результатов я могу рассказать лишь вкратце. С этой целью я воспроизвел их на своем персональном компьютере, используя список нулей, который Одлыжко любезно разместил на своем веб-сайте. [174] Чтобы избежать всяких аномалий, связанных с малыми значениями, я взял нули от 90 001-го до 100 000-го, если считать вверх по критической прямой от z = 1/ 2. Это составляет 10 000 нулей — вполне достаточно, чтобы извлечь из них некоторый статистический смысл. Нуль с номером 90 001 расположен в точке 1/ 2+ 68 194,3528 i, а 100 000-й нуль — в точке 1/ 2+ 74 920,8275 i(если округлять до 4 знаков после запятой). Итак, изучим статистические свойства последовательности из 10 000 вещественных чисел, которая начинается числом 68 194,3528, а заканчивается числом 74 920,8275.
174
(Примеч. перев.)
Мы говорили в главе 13.viii, что по мере движения вверх по критической прямой нули делаются в среднем ближе друг к другу и поэтому необходимо внести поправку — растянуть верхнюю часть выбранного интервала. Это совсем не сложно сделать, умножив каждое число на его логарифм. У б'oльших чисел б'oльшие логарифмы, а это как раз и требуется для того, чтобы выровнять среднее расстояние между нулями. В этом и состоит смысл слова «нормировка» в приведенной выше формулировке закона Монтгомери-Одлыжко. Теперь наша последовательность начинается числом 759 011,1279 и заканчивается числом 840 925,3931.
Далее, нас интересуют относительныеинтервалы между нулями, поэтому можно вычесть 759 011,1279 из каждого числа в последовательности — это не повлияет на результат. Последовательность теперь идет от нуля до числа 81 914,2653. И наконец, просто для того, чтобы сделать числа покрасивее, перейдем к другому масштабу, поделив каждое число на 8,19142653. Это также не повлияет на относительные интервалы, ведь все, что мы сделали, — это сменили масштаб. В этом окончательном виде наша последовательность начинается такими числами: 0, 1,2473, 2,5840 и т.д., а заканчивается числами 9 997,3850, 9 999,1528, 10 000.
Если включить значения на концах, то перед нами будет 10 000 приготовленных для исследования чисел, простирающихся от 0 до 10 000. Поскольку имеется 9999 интервалов между последовательными числами, средний интервал равен 10 000 : 9999, что лишь совсем чуть-чуть больше единицы.
Теперь можно задавать статистические вопросы. Например: как именно интервалы отклоняются от среднего? Сколь многие из них имеют длину меньше единицы? [175] Ответ: 5 349. У скольких из них длина больше 3? Ни у одного. Этот результат радикально отличается оттого, что получается из идеально случайного разброса [176] , где эти числа соответственно равны 6 321 и 489. Это подтверждает те выводы, которые можно извлечь из рисунков 18.2 и 18.3 . Наши нули не разбросаны случайным образом. Они более многочисленны вблизи среднего интервала (который слегка превышает 1), и при этом имеется острая недостача интервалов малой или большой величины.
175
Ответ не гласит «половина». Сказать «половина» означало бы перепутать середину и среднее. Среднее из четырех чисел 1, 2, 3, 8 510 294 равно 2 127 575, но половина из них меньше, чем 3.
176
Известного в математике как «распределение Пуассона». Здесь, кстати, повсюду присутствует число e: например, указанное число 6 321 есть 10 000(1 - 1/ e).
Подсчитав число интервалов величиной от 0 до 0,1, от 0,1 до 0,2 и т.д.
Рисунок 18.5.Закон Монтгомери-Одлыжко (распределение расстояний между нулями дзета-функции от 90 001-го до 100 000-го).
Там показано распределение интервалов между выбранными корнями и для сравнения — кривая, предсказываемая теорией ГУА. Совпадение не слишком хорошее, но и наша выборка не так уж велика или находится недостаточно высоко на критической прямой. Тем не менее соответствие достаточно хорошее, вполне в пределах отклонений, допускаемых случайностью; разумеется, совпадения в статье Одлыжко намного лучше. [177]
177
Уравнение, которым задается изображенная на рисунке 18.5 кривая, имеет вид y= (320 000/ 2) x 2 e – 4 х•x/ . Это скошенное распределение, а не симметричное, как гауссовское нормальное. Его пик находится при аргументе 1/ 2 , т.е. 0,8862269…. Эту кривую для распределения последовательных интервалов ГУА предложил в качестве догадки Юджин Вигнер. Его догадка основывалась на небольшом количестве данных, собранных из экспериментов на атомном ядре. Позднее оказалось, что это не в точности правильная кривая, хотя она и находится в пределах ошибки около 1%. Истинная кривая, которую нашел Мишель Годен, описывается более сложным уравнением. Эндрю Одлыжко пришлось написать целую программу, чтобы ее нарисовать.
Итак: да, судя по всему, нетривиальные нули дзета-функции и собственные значения случайных эрмитовых матриц некоторым образом связаны друг с другом. Это ставит нас перед довольно серьезным вопросом, который все время висел в воздухе с момента встречи Хью Монтгомери и Фримена Дайсона в Фалд-Холл в 1972 году.
Нетривиальные нули дзета-функции Римана появились при исследовании распределения простых чисел. Собственные значения случайных эрмитовых матриц появились при исследовании поведения систем субатомных частиц, подчиняющихся законам квантовой механики. Скажите, пожалуйста, что вообще может быть общего между простыми числами и поведением субатомных частиц?
Глава 19. Поворот Золотого Ключа
А теперь попытаемся проникнуть в самую сердцевину работы Римана 1859 года. Это по необходимости подразумевает знакомство с некоторым довольно продвинутым математическим аппаратом, который использовал сам Риман. Мне придется без лишних слов перескакивать через по-настоящему трудные места, преподнося их как faits accomplis [178] ; я просто попытаюсь описать логические этапы в рассуждениях Римана, говоря при этом нечто вроде: «У математиков есть способ перейти от этого к этому», не объясняя, в чем же этот способ состоит и как он работает.
178
Свершившийся факт (франц.) (Примеч. перев.)
Я надеюсь, что у читателя в итоге сложится впечатление по крайней мере насчет общей логической канвы тех шагов, которым следовал Риман. Но даже и это не удастся без небольшой толики анализа, существенные моменты которого уже изложены в главе 7.vi-vii. Несколько следующих разделов могут показаться вам сложными. Но наградой будет результат столь же мощный, сколь и прекрасный, из которого вытекает все — сама Гипотеза, ее значение и ее связь с распределением простых чисел.
Для начала выскажу нечто противоречащее тому, что было сказано в главе 3.iv. Ну, вроде как противоречащее. Там мы говорили, что не слишком интересно рисовать график функции (N), которая подсчитывает для нас простые числа. В том месте книги так и было. А теперь это не так.
Однако сначала кое-что подкорректируем. Вместо того чтобы писать (N), что на глаз математика выглядит как «число простых чисел, не превышающих натурального числа N», будем писать (x), что должно означать «число простых чисел, не превышающих вещественного числа x». Ничего особенного мы не сделали. Разумеется, число простых чисел, не превышающих 37,51904283, есть просто число простых чисел, не превышающих 37 (и равно двенадцати: это 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37). Но нам предстоит познакомиться с некоторым объемом дифференциального и интегрального исчисления, и поэтому желательно находиться в царстве всех, а не одних только целых чисел.