Чтение онлайн

на главную - закладки

Жанры

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Шрифт:

Не буду пытаться объяснить мебиусово обращение в общем виде. Оно описано в любом хорошем учебнике по теории чисел (см., например, раздел 16.4 в классической монографии «Теория чисел» Харди и Райта), а кроме того, поиск в Интернете наведет вас на множество ссылок. Подражая до некоторой степени самим функциям и J, я вместо того, чтобы уныло тащиться от одной точки в моих рассуждениях к другой, перескочу сразу к следующему факту: применение мебиусова обращения к выражению (19.1) дает такой результат:

(x)= J(x)1/ 2 J(x) - 1/ 3 J( 3x) - 1/ 5 J( 5x) + 1/ 6 J( 6x) - 1/ 7 J( 7x) + 1/ 10 J( 10x) + …. (19.2)

Можно

заметить, что некоторые члены (четвертый, восьмой, девятый) здесь отсутствуют. А из тех, что присутствуют, некоторые (первый, шестой, десятый) входят со знаком плюс, тогда как другие (второй, третий, пятый, седьмой) — со знаком минус. Ничего не напоминает? Здесь спрятана функция Мебиуса из главы 15. На самом деле

(где 1x как и в других местах в книге, есть, конечно, просто x). Почему, как вам теперь кажется, это назвали мебиусовымобращением?

Итак, мы записали функцию (x), выразив ее через J(x). Это чудесно, потому что Риман нашел способ, как выразить J(x)через (x).

Прежде чем расстаться с выражением (19.2) , надо еще упомянуть, что, подобно выражению (19.1) , это не бесконечная сумма, а конечная. Это происходит из-за того, что функция J, как и функция , равна нулю, когда xменьше 2 (взгляните на график!), а если последовательно извлекать корни из какого-нибудь числа, то результат рано или поздно упадет ниже 2 и там останется. Например,

(100) = J(100) - 1/ 2 J(10) - 1/ 3 J(4,64…) - 1/ 5 J(2,51…) + 1/ 6 J(2,15…) - 0 + 0 + … = 28 8/ 15– 2 2/ 35/ 61/ 5+ 1/ 6,

что дает в точности число 25, которое и в самом деле является числом простых чисел меньших 100. Волшебство.

А теперь повернем Золотой Ключ.

V.

Вот Золотой Ключ, первое равенство в статье Римана 1859 года, полученное нами в главе 7, когда я убеждал вас, что это просто хитрый способ переписать решето Эратосфена:

He будем забывать, что числа, появляющиеся в правой части, — это в точности все простые числа.

Возьмем логарифм от обеих частей. Если что-то равно чему-то, то, конечно, и логарифм одного должен быть равен логарифму другого. Согласно 9-му правилу действий со степенями, которое гласит, что ln( axb) = ln а+ ln b, получаем

Но, поскольку ln 1/ a= -ln aсогласно 10-му правилу, это выражение

равно

Теперь вспомним ряд сэра Исаака Ньютона для функции ln (1 - x) из главы 9.vii. Он пригоден при x, лежащем от -1 до +1, что, без сомнения, выполнено в нашем случае, поскольку sположительно. Поэтому каждый логарифм можно разложить в бесконечный ряд таким образом (19.3):

Это бесконечная сумма бесконечных сумм — с первого взгляда, я полагаю, подобное немного пугает, но в математике такие конструкции встречаются достаточно часто.

Сейчас может показаться, что мы оказались в ситуации, которая много хуже той, что была вначале. Аккуратненькое бесконечное произведение мы превратили в бесконечную сумму бесконечных сумм. Предприятие может показаться безнадежным. Да, но это если не использовать всю мощь анализа.

VI.

Возьмем какой-нибудь один из членов в этой сумме сумм. Выберем, например,

. Рассмотрим функцию x s– 1и будем временно считать, что s— положительное число. Каков интеграл от x s– 1? В силу общих правил обращения со степенями, приведенных в главе 7.vii, это x s/(- s), т.е. (-1/ s)x(1/ x s). Если мы возьмем этот интеграл при x, равном бесконечности, и вычтем из того, что получится, тот же интеграл, взятый при xравном 3 2,то что получится? Ну, если x— очень большое число, то (-1/ s)x(1/ x s) — число очень маленькое, так что справедливо будет считать, что, когда xбесконечно велико, это выражение равно нулю. И из этого — из нуля — мы собираемся вычесть (-1/ s)x(1/(3 2) s ). Такое вычитание дает (1/ s)x(1/(3 2) s ). Сухой остаток таков: выбранный член в выражении (19.3) можно переписать в виде интеграла

Но зачем мы вообще все это делаем? Чтобы вернуться к функции J, вот зачем.

Дело в том, что x= 3 2— это значение, при котором функция Jсовершает прыжок на 1/ 2. В голове у математика — и уж точно в голове у великого математика, каким был Риман, — приведенное выражение

сразу вызывает некоторый образ. Этот образ представлен на рисунке 19.4: это функция Jс заполненной полосой. Полоса тянется от 3 2(т.е. от 9) до бесконечности и имеет высоту одна вторая. Ясно, что вся площадь под (говорим «площадь под» — думаем «интеграл») графиком функции Jсоставлена из подобных же полосок. Полоски высотой 1, протянувшиеся от каждого простого числа до бесконечности; полоски высотой одна вторая, идущие от каждого квадрата простого числа до бесконечности; полоски высотой одна треть от каждого куба простого числа до бесконечности… Видите, как все срастается с той бесконечной суммой бесконечных сумм в выражении (19.3) ?

Поделиться:
Популярные книги

Холодный ветер перемен

Иванов Дмитрий
7. Девяностые
Фантастика:
попаданцы
альтернативная история
6.80
рейтинг книги
Холодный ветер перемен

Убивать чтобы жить 5

Бор Жорж
5. УЧЖ
Фантастика:
боевая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 5

Казачий князь

Трофимов Ерофей
5. Шатун
Фантастика:
боевая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Казачий князь

Страж Кодекса. Книга VII

Романов Илья Николаевич
7. КО: Страж Кодекса
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Страж Кодекса. Книга VII

Отборная бабушка

Мягкова Нинель
Фантастика:
фэнтези
юмористическая фантастика
7.74
рейтинг книги
Отборная бабушка

Барон переписывает правила

Ренгач Евгений
10. Закон сильного
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Барон переписывает правила

Гримуар темного лорда III

Грехов Тимофей
3. Гримуар темного лорда
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Гримуар темного лорда III

Черный маг императора 2

Герда Александр
2. Черный маг императора
Фантастика:
юмористическая фантастика
попаданцы
аниме
6.00
рейтинг книги
Черный маг императора 2

Ложная девятка

Риддер Аристарх
1. 4-4-2
Фантастика:
попаданцы
альтернативная история
фэнтези
5.00
рейтинг книги
Ложная девятка

Око василиска

Кас Маркус
2. Артефактор
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Око василиска

Гридень 2. Поиск пути

Гуров Валерий Александрович
2. Гридень
Детективы:
исторические детективы
5.00
рейтинг книги
Гридень 2. Поиск пути

Ложная девятка, часть третья

Риддер Аристарх
3. 4-4-2
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Ложная девятка, часть третья

Три `Д` для миллиардера. Свадебный салон

Тоцка Тала
Любовные романы:
современные любовные романы
короткие любовные романы
7.14
рейтинг книги
Три `Д` для миллиардера. Свадебный салон

Законник Российской Империи. Том 2

Ткачев Андрей Юрьевич
2. Словом и делом
Фантастика:
городское фэнтези
альтернативная история
аниме
дорама
6.40
рейтинг книги
Законник Российской Империи. Том 2