Пространство, время и движение. Величайшие идеи Вселенной
Шрифт:
Важно ли это все для физики? Может и нет. Мы, люди, — существа ограниченные. На практике ни один из нас не заметит разницы между «бесконечным» и «очень большим» (или «нулевым» и «очень маленьким»). Так что, описывая наш мир, мы можем сами решать, что считать бесконечностью. Тем не менее не следует путать то, что может представить себе человек, и то, что на самом деле существует в природе. Возможно, когда-нибудь кто-то предложит единый, универсальный подход ко всем проблемам непрерывности и бесконечности. На данный момент такого подхода нет.
Три. Динамика
Представьте себе два дерева, растущие на некотором расстоянии друг от друга. Где-нибудь в парке, на совершенно ровном участке. Встаньте возле одного
Теперь попробуйте действовать по-другому. Возьмите веревку и привяжите один конец к первому дереву, а другой — ко второму. Натяните веревку и посмотрите на результат: получится прямая, проходящая ровно над следами из прошлого опыта.
Это и очевидно, и примечательно. Мы хорошо понимаем, что означает «прямая», но можем построить ее разными способами. Один из них — двигаться, не меняя направления, другой — найти кратчайший путь между начальной и конечной точками. Первый способ соответствует локальной философии в духе парадигмы Лапласа, о которой мы говорили в прошлой главе. Действительно, в каждый момент времени мы делаем что-то, что в конце концов приводит нас к определенному результату. Второй способ глобален, как законы Кеплера: из многих способов расположить веревку между деревьями выбран самый короткий. Оба способа, хоть и разные, дают в итоге одинаковый результат.
Физика работает точно так же. Мы уже говорили про идею Лапласа: данные о состоянии системы на какой-то момент времени позволяют нам шаг за шагом проследить за ее развитием в будущем. Но тот же результат можно получить совсем по-другому, исходя из совсем иного набора фундаментальных понятий. Поэтому возникает вопрос: какой из способов лучше, более эффективен? Если результат все равно один, возможно, нет разницы, как его получить. Мы не знаем окончательных формулировок законов физики, а потому одна из дорог может оказаться менее петляющей. Как однажды сказал Ричард Фейнман, одну и ту же мысль можно выразить по-разному, но «на пути в неизвестность все способы будут идентичны с психологической точки зрения».
В прошлой главе мы говорили об «изменении» в целом как исключительно общем понятии. В этой главе мы обсудим динамику, то есть изменения, подчиняющиеся формулам физики. Мы рассмотрим свойства некоторых физических систем и что говорит о них классическая механика. Размышляя о кинетической и потенциальной энергии, мы сделаем интересные выводы о динамике разных объектов. В итоге мы заново сформулируем законы механики, посмотрим на них более глобально, с учетом истории системы в целом, сквозь призму того, что сейчас называется «принципом наименьшего действия».
Важные сведения о движении
Рассмотрим парадигму Лапласа чуть более систематично. Чтобы не усложнять, представим себе частицу, которая движется в трехмерном пространстве. Состояние такой системы определяется положением (вектором
Порядок действий таков. Мы говорим о какой-то конкретной системе, к примеру, о «шаре, катящемся с холма» или «планете, вращающейся вокруг Солнца». У нас есть данные
Теперь при помощи дифференциального исчисления мы в состоянии построить траекторию движения объекта
Это на удивление гибкий алгоритм. Мы много говорим о частицах, но классическая механика — наука значительно более общая. Возьмем некий пространственный объект: твердое, жидкое или газообразное тело, и поглядим на него макроскопически, как на единое целое, а не набор атомов. Мы можем сказать, что любой бесконечно малый кусок, «элемент объема» этого тела dV находится под действием внешних сил: гравитационных, электрических или каких-то иных. Но это не всё. На этот элемент объема будут воздействовать и другие такие же элементы, которые находятся рядом с ним. Если мы знаем положение и скорость рассматриваемого элемента, а также действующие на него силы, законы Ньютона подскажут нам траекторию его движения. Тогда благодаря дифференциальному исчислению мы сможем вывести уравнения для системы в целом, то есть сложить воедино все элементы объема.
Чтобы построить траекторию, нам важно знать входные данные: положение и скорость объекта. Не менее важно, что никакие другие сведения для этого не требуются. Например, ускорение мы получим при помощи закона Ньютона, исходя из строения системы. При этом скорость — производная положения, а ускорение — производная скорости, или, как говорят, вторая производная положения:
(3.1)
Вспомните: говоря об обозначениях, мы отметили, что d — это не переменная, а часть оператора. Запись d/dt означает производную по времени. Чтобы взять вторую производную, то есть производную производной, мы должны использовать оператор d/dt дважды. Поэтому в формулах мы будем писать d2/dt2.
Мы можем взять производные и других, более высоких порядков. У них даже есть свои, несколько экзотические названия:
• Скорость = первая производная положения (по времени).
• Ускорение = производная скорости = вторая производная положения.
• Рывок = производная ускорения = третья производная положения.
• Скачок = производная рывка = четвертая производная положения.
• Прыжок = производная скачка = пятая производная положения.
• Толчок = производная прыжка = шестая производная положения.