Чтение онлайн

на главную - закладки

Жанры

Пространство, время и движение. Величайшие идеи Вселенной
Шрифт:

(8.21)

Давайте представим себе, что еще не знаем уравнение Эйнштейна. Попробуем вывести его из принципа наименьшего действия. Задача понятна: нам нужно определить плотность Лагранжа L. Она должна состоять из метрики и ее производных (так же, как плотность Лагранжа простой частицы состоит из ее положения и его производных, а именно скорости). Хорошая новость в том, что мы ищем скалярную функцию: тензор с нулем индексов, а не с двумя, как в левой части выражения (8.14). Это существенно облегчит нашу работу.

Фактически

такая функция только одна: это скаляр кривизны Риччи R. И так как других вариантов для нашей метрики, в общем-то, нет, можно записать, что
. Для правильной работы сил гравитации в формулу нужно включить гравитационную постоянную G. Кроме того, нам потребуется плотность Лагранжа для материи. Мы не можем сказать, чему она равна, поскольку это зависит от типа материи. В результате получим такое выражение:

(8.22)

Вот и все. Мы определили действие, которое сводит к минимуму метрику пространства-времени. Как можно заметить, оно соответствует уравнению Эйнштейна (8.18). Правда, для простоты мы опустили одну деталь: в искривленном пространстве-времени «пространственный элемент» выглядит несколько необычно. И чтобы помнить об этом, мы записали его как

[27] , а не просто d4x.

Вдумайтесь, насколько прекрасен этот подход. Предложить правильный вариант скалярной плотности Лагранжа гораздо проще, чем подобрать тензор для уравнения Эйнштейна, а наш любимый закон сохранения энергии соблюдается автоматически, без всяких усилий или проверок с нашей стороны. Разумеется, чтобы верно истолковать принцип наименьшего действия, а затем проделать все нужные выкладки (которые здесь мы, естественно, не приводим) и получить уравнение Эйнштейна, требуется сильный математик.

27

Если вам непременно хочется это знать, пространственный элемент , где g — определитель метрического тензора.

Эйнштейн, конечно же, был очень силен в математике, а его коллега Давид Гильберт — один из величайших математиков начала XX века — еще сильнее. («Пространство Гильберта» — одно из важнейших понятий общей теории относительности.) Летом 1915 года, незадолго до того, как было выведено знаменитое уравнение, Гильберт предложил Эйнштейну прочитать несколько лекций в Гёттингенском университете. Ученые много говорили об искривленном пространстве-времени. Эйнштейн даже гостил у Гильберта, а когда вернулся в Берлин, продолжил переписку с ним. В результате они практически одновременно пришли к уравнению (8.18): Эйнштейн — методом проб и ошибок, а Гильберт — посредством математических ухищрений.

По мнению некоторых историков, Гильберт вывел уравнение поля за несколько дней до Эйнштейна, а тот в своей работе во многом полагался на материал, полученный от Гильберта в ходе переписки. Достоверных сведений об этом нет: часть писем утрачена, документы искажены правками. Ясно лишь то, что именно Эйнштейн впервые предложил рассмотреть гравитацию в терминах кривизны пространства-времени и он же впервые публично представил свое уравнение в окончательном

виде, четко обосновав с точки зрения физики. Поэтому выражение (8.18) принято называть «уравнением Эйнштейна», а формулу (8.22) — «действием Эйнштейна — Гильберта». Эти названия довольно точно передают исторический контекст, а так бывает далеко не всегда.

Эмпирические последствия

В отличие от большинства физических теорий, целью создания общей теории относительности было не объяснение каких-то загадочных аномалий, найденных в ходе экспериментов, а устранение нестыковок между другими теориями. Эйнштейн пытался согласовать давно известные представления о гравитации, прежде всего закон обратных квадратов и принцип эквивалентности, со специальной теорией относительности. В итоге он смог это сделать, стоило лишь представить, что гравитация — следствие кривизны пространства-времени.

Когда же все было сделано и появилось уравнение поля, настало время вернуться к экспериментам, проверить новую теорию на практике.

Одной из таких проверок стал вопрос о прецессии орбиты Меркурия, что было немного нечестно, поскольку ученые уже неплохо изучили эту проблему. Кеплер утверждал, что планеты движутся по идеальным эллипсам, а Ньютон уточнил, что так может быть лишь тогда, когда вокруг идеально сферического Солнца вращается только одна планета, которая не испытывает при этом каких-то иных воздействий. В реальном мире планеты взаимодействуют друг с другом, и их орбиты немного смещаются. Подсчеты показали, что ось орбиты Меркурия поворачивается на 0,148° за сто лет.

В начале XIX века астрономы измерили прецессию Меркурия и выяснили, что ее скорость составляет 0,160° за сто лет. Расхождение между теорией и практикой — всего в 0,012 — довольно мало, но не может считаться случайной ошибкой. Французский астроном Урбен Леверье объяснил схожую аномалию орбиты Урана, предположив, что в Солнечной системе есть еще одна планета — Нептун. Аналогичные рассуждения привели ученого к мысли о том, что неизвестная пока планета есть и рядом с Меркурием. Она даже получила имя: Вулкан, но, несмотря на все усилия, астрономы не смогли ее обнаружить. В конце концов было решено, что такой планеты не существует.

Эйнштейн знал, что его теория хорошо коррелирует с механикой Ньютона, но при расчете дает немного иные результаты. В сильных гравитационных полях расхождения становятся существенными. Предположив, что именно так происходит с Меркурием, самой близкой к Солнцу планетой, Эйнштейн попытался вычислить вызванную этим дополнительную прецессию и получил в результате 0,012° за сто лет, то есть сумел объяснить известное расхождение. Можно представить себе, какой восторг (и облегчение) испытал Эйнштейн, когда после долгих лет тензорного анализа и других математических абстракций понял, что его теория дает идеальное объяснение давней научной проблемы.

Найти ответ на давно поставленный вопрос — отличное достижение. Но все же в научных кругах считается более ценным, когда теория позволяет предугадать что-то еще неизведанное, но что удастся впоследствии обнаружить. Так было с отклонением света, или гравитационным линзированием, которое Эйнштейн предсказал еще до того, как вывел полное уравнение поля из общей теории относительности. На самом деле это явление — следствие принципа эквивалентности. Если смотреть из ускоряющейся ракеты, луч света покажется искривленным, что объясняется изменением ее скорости. Но то же самое должно быть верным и для ракеты, которая неподвижно стоит на планете с гравитационным полем.

Поделиться:
Популярные книги

Начальник милиции. Книга 5

Дамиров Рафаэль
5. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции. Книга 5

Папина дочка

Рам Янка
4. Самбисты
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Папина дочка

Возвышение Меркурия. Книга 8

Кронос Александр
8. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 8

АллатРа

Новых Анастасия
Научно-образовательная:
психология
история
философия
обществознание
физика
6.25
рейтинг книги
АллатРа

Золушка вне правил

Шах Ольга
Любовные романы:
любовно-фантастические романы
6.83
рейтинг книги
Золушка вне правил

Возвышение Меркурия. Книга 5

Кронос Александр
5. Меркурий
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 5

На Ларэде

Кронос Александр
3. Лэрн
Фантастика:
фэнтези
героическая фантастика
стимпанк
5.00
рейтинг книги
На Ларэде

Барон Дубов 6

Карелин Сергей Витальевич
6. Его Дубейшество
Фантастика:
юмористическое фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Барон Дубов 6

Ротмистр Гордеев

Дашко Дмитрий Николаевич
1. Ротмистр Гордеев
Фантастика:
фэнтези
попаданцы
альтернативная история
5.00
рейтинг книги
Ротмистр Гордеев

Кодекс Крови. Книга VI

Борзых М.
6. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга VI

Лучше подавать холодным

Аберкромби Джо
4. Земной круг. Первый Закон
Фантастика:
фэнтези
8.45
рейтинг книги
Лучше подавать холодным

Звездная Кровь. Изгой

Елисеев Алексей Станиславович
1. Звездная Кровь. Изгой
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Звездная Кровь. Изгой

Крестоносец

Ланцов Михаил Алексеевич
7. Помещик
Фантастика:
героическая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Крестоносец

Сердце Дракона. Том 12

Клеванский Кирилл Сергеевич
12. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.29
рейтинг книги
Сердце Дракона. Том 12