Чтение онлайн

на главную - закладки

Жанры

Трактат об электричестве и магнетизме
Шрифт:

Аналогично можно показать, что и точечный заряд конечной величины не может существовать в природе. Однако в некоторых случаях удобно говорить о линейных зарядах и точечных зарядах. Мы будем представлять их как заряженные проволоки или малые тела, размеры которых пренебрежимы по сравнению с основными существенными расстояниями.

Поскольку количество электричества на любом заданном участке провода при заданном потенциале стремится к нулю при неограниченном уменьшении диаметра провода, распределение заряда на телах конечных размеров не изменится существенно при внесении очень тонкой металлической проволочки в поле, например, для соединения

этих тел с землёй, электрической машиной или электрометром.

О силовых линиях

82. Если построить кривую, направление которой совпадает в каждой точке с направлением результирующей напряжённости в этой точке, то такая кривая называется Силовой Линией.

На любом участке силовой линии она идёт от места с большим потенциалом к месту с меньшим потенциалом.

Поэтому силовая линия не может пересекать саму себя, но должна иметь начало и конец. Начало силовой линии, согласно п. 80, должно быть расположено на положительно заряженной поверхности, а конец силовой линии должен находиться на отрицательно заряженной поверхности.

Началом и концом силовой линии называются соответствующие точки положительной и отрицательной заряженной поверхности.

Если силовая линия перемещается так, что её начало описывает замкнутую кривую на положительной поверхности, то её конец описывает соответствующую замкнутую кривую на отрицательной поверхности, а сами силовые линии образуют трубчатую поверхность, называемую трубкой индукции. Такую трубку называют Соленоидом 3.

3 От -труба. Фарадей (§ 3271) употребляет термин «сфондилоид» в том же смысле.

В каждой точке боковой поверхности трубки сила лежит в касательной плоскости, так что индукции поперёк поверхности нет. Следовательно, если в трубке не содержится заряженного вещества, то, согласно п. 77, полная индукция через замкнутую поверхность, образуемую боковой поверхностью трубки и двумя её торцами, равна нулю, следовательно, значение R cos dS для обоих торцов должно быть одинаково по величине и отличаться знаком.

Если эти торцевые поверхности являются поверхностями проводников, то =0 и R=-4, так что интеграл R cos dS переходит в -4dS, т. е. равен заряду поверхности, умноженному на 4.

Таким образом, положительный заряд участка поверхности, охватываемого замкнутой кривой в начале силовой трубки, численно равен отрицательному заряду, охватываемому соответствующей замкнутой кривой в конце силовой трубки.

Из свойств силовых линий можно вывести ряд важных следствий.

Внутренняя поверхность замкнутого проводящего сосуда совершенно лишена заряда, и потенциал всех точек внутри неё тот же, что и у проводника, если внутри сосуда нет заряженных тел.

Действительно, поскольку силовая линия должна начинаться на положительно заряженной поверхности, а кончаться на отрицательно заряженной, а никаких заряженных тел внутри сосуда нет, то силовая линия, если она существует внутри сосуда, должна начинаться и кончаться на самой поверхности сосуда. Но потенциал в начале силовой линии должен быть больше, чем в конце, между тем мы показали, что потенциал во всех точках проводника один и тот же.

Значит, в объёме внутри полого проводящего сосуда не может быть никаких силовых линий, если там нет никаких заряженных тел.

Если проводник, находящийся внутри замкнутого полого сосуда, соединён с этим сосудом, то его потенциал

становится равным потенциалу сосуда, а поверхность его становится непрерывно связанной с внутренней поверхностью сосуда. Следовательно, на проводнике нет никакого заряда.

Если представить себе произвольную заряженную поверхность разбитой на элементарные участки так, что заряд каждого участка равен единице, и если построить в силовом поле соленоиды, опирающиеся на эти элементарные площадки, то поверхностный интеграл через любую другую поверхность будет выражаться числом соленоидов, пересекаемых этой поверхностью. Именно в этом смысле Фарадей применяет понятие силовых линий для указания не только на направление, но и на величину силы в произвольной точке поля.

Мы пользуемся выражением Силовые Линии потому, что им пользовались Фарадей и другие. Строго говоря, их следовало бы назвать Линиями Электрической Индукции.

В обычных случаях линии индукции указывают также величину и направление результирующей электродвижущей напряжённости в каждой точке, поскольку напряжённость и индукция направлены одинаково и находятся в постоянном отношении. Однако бывают случаи, когда важно помнить, что эти линии указывают именно индукцию, а напряжённость непосредственно определяется эквипотенциальными поверхностями: она перпендикулярна этим поверхностям и обратно пропорциональна расстоянию между соседними поверхностями.

Об удельной индуктивной способности

83а. Выше при исследовании поверхностных интегралов мы приняли обычное представление о прямом воздействии на расстоянии и не учитывали никаких эффектов, зависящих от природы диэлектрической среды, в которой наблюдаются эти силы.

Но Фарадей заметил, что количество электричества, наводимое заданной электродвижущей силой на поверхности проводника, граничащего с диэлектриком, для разных диэлектриков различно. Для большинства твёрдых и жидких диэлектриков оно больше, чем для воздуха и для газов. Поэтому говорят, что у этих веществ удельная индуктивная способность больше, чем у воздуха, который Фарадей принял за эталонную среду.

Мы можем выразить теорию Фарадея на математическом языке, сказав, что в диэлектрической среде индукция через поверхность представляет собой произведение нормальной составляющей электрической напряжённости на коэффициент, являющийся удельной индуктивной способностью этой среды. Если этот коэффициент обозначить через K то всюду при вычислении поверхностных интегралов нам надо будет умножить X, Y, Z на K, так что уравнение Пуассона примет вид

d

dx

K

dV

dx

+

d

dy

K

dV

dy

+

d

dz

K

dV

dz

+

4

=

0.

(1)

На поверхности раздела двух сред с индуктивными способностями K1 и K2, потенциалы в которых мы обозначим V1 и V2, характеристическое уравнение можно записать в виде

K

Поделиться:
Популярные книги

Вернуть невесту. Ловушка для попаданки

Ардова Алиса
1. Вернуть невесту
Любовные романы:
любовно-фантастические романы
8.49
рейтинг книги
Вернуть невесту. Ловушка для попаданки

Кротовский, побойтесь бога

Парсиев Дмитрий
6. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Кротовский, побойтесь бога

Жена по ошибке

Ардова Алиса
Любовные романы:
любовно-фантастические романы
7.71
рейтинг книги
Жена по ошибке

Контрактер Душ

Шмаков Алексей Семенович
1. Контрактер Душ
Фантастика:
фэнтези
попаданцы
аниме
5.20
рейтинг книги
Контрактер Душ

Не грози Дубровскому! Том III

Панарин Антон
3. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том III

Сводный гад

Рам Янка
2. Самбисты
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Сводный гад

Мастер 3

Чащин Валерий
3. Мастер
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 3

Печать мастера

Лисина Александра
6. Гибрид
Фантастика:
попаданцы
технофэнтези
аниме
фэнтези
6.00
рейтинг книги
Печать мастера

Идеальный мир для Лекаря 21

Сапфир Олег
21. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 21

Миротворец

Астахов Евгений Евгеньевич
12. Сопряжение
Фантастика:
эпическая фантастика
боевая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Миротворец

Возвышение Меркурия. Книга 3

Кронос Александр
3. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 3

70 Рублей

Кожевников Павел
1. 70 Рублей
Фантастика:
фэнтези
боевая фантастика
попаданцы
постапокалипсис
6.00
рейтинг книги
70 Рублей

Беглец

Бубела Олег Николаевич
1. Совсем не герой
Фантастика:
фэнтези
попаданцы
8.94
рейтинг книги
Беглец

Волков. Гимназия №6

Пылаев Валерий
1. Волков
Фантастика:
попаданцы
альтернативная история
аниме
7.00
рейтинг книги
Волков. Гимназия №6