Чтение онлайн

на главную - закладки

Жанры

Творчество в математике. По каким правилам ведутся игры разума
Шрифт:

Теорема породила чудовище, невозможное с общепринятой точки зрения.

Оказалось, что не все соотношения можно свести к отношению двух целых. Нечто столь простое, как диагональ квадрата, оказалось несоизмеримым с его стороной.

Так появились несоизмеримые величины. В то время математики не обладали достаточными знаниями, чтобы доказать, что длина окружности также несоизмерима с ее диаметром, то есть что число несоизмеримо с дробными числами.

Рассмотрим, почему квадратный корень из 2 нельзя представить как частное двух натуральных чисел. Всякое натуральное число n можно представить в виде произведения простых множителей. Пример:

12 = 22·3;

315 = 32·3·7.

Заметим, что при возведении числа в квадрат все простые множители в его разложении будут встречаться

четное число раз:

122 = (22·3)2 = 24·32;

3152 = (З2·5 ·7)2 = З4·52·72.

Если частное двух натуральных чисел m и равно квадратному корню из двух, то

Теперь разложение на простые множители для m2 и для m2 содержит четное число простых множителей. По этой причине, вне зависимости от того, присутствует ли 2 в разложении n2 на множители, 2 будет фигурировать в разложении 2n2 нечетное число раз. Если разложение n2 на множители не содержит 2, то разложение 2n2 будет содержать одну двойку; если же в разложении n2 содержится несколько двоек, их число будет четным, следовательно, в разложении 2n2 двойка встретится нечетное число раз. Поэтому m2 и n не могут быть равны, так как в разложении одного из этих чисел 2 встретится четное число раз, а в разложении другого — нечетное число раз. Следовательно, 2 не может быть частным двух натуральных чисел, и диагональ квадрата и его сторона несоизмеримы.

* * *

ТРАНСЦЕНДЕНТНЫЕ ЧИСЛА

Многочлен — это выражение, в котором присутствует переменная, возведенная в различные степени с натуральным показателем. Числа, на которые умножается переменная в этих степенях, называются коэффициентами. Например, следующий многочлен

Р(х) = х5 — 4х3 + 3х2/2 -6

имеет рациональные коэффициенты, а именно 1, -4, 3/2 и -6. Число а называется корнем многочлена, если при этом значении переменной многочлен обращается в ноль: Р(а) = 0. Число а = 2 является корнем вышеприведенного многочлена. Число называется трансцендентным, если не существует многочлена с рациональными коэффициентами, корнем которого оно бы являлось. Иными словами, нельзя записать уравнение со степенями с натуральным показателем, решением которого будет трансцендентное число. Иррациональность числа 2 была доказана еще в Древней Греции. Об иррациональности числа я математики подозревали давно, однако доказательство этому было найдено лишь в 1761 году благодаря усилиям Иоганна Ламберта. В 1882 году Линдеман доказал, что я является трансцендентным числом. Как следствие, была окончательно доказана невозможность решения задачи о квадратуре круга. Число е (е = 2,71828182845904…) названо так по первой букве фамилии одного из величайших математиков всех времен — Леонарда Эйлера (1707–1783). Так же как и , е является иррациональным и трансцендентным.

* * *

Натуральные числа столь близки нам, что многие считали их божественным творением. Можно сказать, что нечто столь совершенное не имеет

изъянов и что любая теорема о натуральных числах в итоге обязательно должна быть либо доказана, либо опровергнута. Любое утверждение в системе натуральных чисел обязательно является либо истинным, либо ложным.

Однако математик Курт Гёдель (1906–1978) доказал, что это не так, что существуют недоказуемые теоремы о натуральных числах, то есть о них нельзя сказать, истинны они или ложны. Согласно так называемой теореме Геделя о неполноте натуральные числа также содержат парадоксы.

* * *

ПАРАДОКСЫ

Парадокс — это рассуждение, приводящее к взаимно исключающим заключениям. Рекурсия в языке порой становится причиной парадоксов, в частности, как в двух первых случаях из числа представленных ниже. Третий случай является удивительным примером математической задачи с тремя разными решениями.

1. Некий брадобрей бреет только тех, кто не бреется сам. Кто должен брить самого брадобрея?

2. Слово «гетерологичный» означает «неприменимый к самому себе». Является ли само слово «гетерологичный» гетерологичным словом?

3. Парадокс Бертрана. В окружности случайным образом проводится хорда. Какова вероятность того, что ее длина будет превышать длину стороны равностороннего треугольника, вписанного в эту же окружность? Эту вероятность можно рассчитать тремя разными способами и получить три разных результата: 1/2, 1/3 и 1/4.

* * *

Как породить и приручить чудовище

Найти смысл и значение основных математических понятий всегда было творческой задачей. Существует множество простых уравнений, о которых говорят, что они не имеют решения, так как число, которое было бы их решением, не имеет смысла в наиболее часто используемой системе чисел.

В поле натуральных чисел, которые используются при счете, не имеет решения следующее уравнение, так как единственно возможное его решение не является натуральным числом:

2х = 1.

Однако это уравнение имеет решение в области дробных, то есть рациональных чисел:

Аналогично, очень простое уравнение

х2 = 2

не имеет решения в поле рациональных чисел. Именно с этой проблемой столкнулись древние греки. Однако им пришлось принять этот «чудовищный» результат, поскольку он являлся решением одной из простейших геометрических задач — задачи о нахождении диагонали квадрата единичной стороны.

Решение этого уравнения и этой задачи расширяет поле чисел так называемыми вещественными числами:

Можно подумать, что некоторые уравнения не имеют решений просто потому, что не существует чисел, которые описывали бы их решения, и, следовательно, решение имеет всякое уравнение. Суть проблемы в том, принадлежит решение этого уравнения к известным на данный момент числам или нет. Приведем еще один пример: мы говорим, что уравнение

х2 = —1

не имеет решения. Однако оно не имеет решения потому, что мы считаем х вещественным числом — конечной или бесконечной дробью, периодической либо нет.

Однако существует значение х, которое является решением этого уравнения, и выглядит оно «чудовищно»:

В середине XVI века Джероламо Кардано нашел формулу решения кубических уравнений, но, применив ее к уравнению х3 — 15х — 4 = 0, он столкнулся с проблемой. Нетрудно показать, что решением этого уравнения является х = 4. Однако решение, найденное по формуле Кардано, выглядело совершенно иначе:

Поделиться:
Популярные книги

По дороге на Оюту

Лунёва Мария
Фантастика:
космическая фантастика
8.67
рейтинг книги
По дороге на Оюту

Неправильный боец РККА Забабашкин 3

Арх Максим
3. Неправильный солдат Забабашкин
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Неправильный боец РККА Забабашкин 3

Темный Лекарь 3

Токсик Саша
3. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 3

На границе империй. Том 8

INDIGO
12. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 8

Росток

Ланцов Михаил Алексеевич
2. Хозяин дубравы
Фантастика:
попаданцы
альтернативная история
фэнтези
7.00
рейтинг книги
Росток

Проданная невеста

Wolf Lita
Любовные романы:
любовно-фантастические романы
5.80
рейтинг книги
Проданная невеста

Кодекс Охотника. Книга VIII

Винокуров Юрий
8. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга VIII

Его нежеланная истинная

Кушкина Милена
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Его нежеланная истинная

Идеальный мир для Лекаря 26

Сапфир Олег
26. Лекарь
Фантастика:
аниме
фэнтези
5.00
рейтинг книги
Идеальный мир для Лекаря 26

СД. Том 15

Клеванский Кирилл Сергеевич
15. Сердце дракона
Фантастика:
героическая фантастика
боевая фантастика
6.14
рейтинг книги
СД. Том 15

Её (мой) ребенок

Рам Янка
Любовные романы:
современные любовные романы
6.91
рейтинг книги
Её (мой) ребенок

Мама из другого мира. Делу - время, забавам - час

Рыжая Ехидна
2. Королевский приют имени графа Тадеуса Оберона
Фантастика:
фэнтези
8.83
рейтинг книги
Мама из другого мира. Делу - время, забавам - час

Имя нам Легион. Том 8

Дорничев Дмитрий
8. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 8

И только смерть разлучит нас

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
И только смерть разлучит нас