Вся физика в 15 уравнениях
Шрифт:
Упругий, как металл
Опять же, закон Гука — слишком наивная модель: невозможно представить себе более простую зависимость! Действительно, можно привести в качестве примера множество материалов, на которые закон Гука в его простейшей форме не распространяется: например, дерево, в котором появляются продольные трещины, если на него надавить, или камень, который крошится на осколки под сосредоточенной нагрузкой. Но, как и в случае с идеальными газами, природное «колесо фортуны» решило, что закон работает достаточно хорошо для большинства металлов. Мы говорим, что металлы обладают
Признайтесь, звучит наивно, но, используя эту простую модель однородного материала и дифференциальное исчисление, можно предсказать, как стальная балка сложной формы изгибается под нагрузкой и какие силы возникают в структуре, состоящей из таких балок. И все, больше ничего не нужно, ну, почти ничего, чтобы построить Эйфелеву башню!
«Механическая сила огня»[14]
Дифференциальное исчисление нашло широкую область применения с возникновением и развитием в XIX в. новой науки: термодинамики. Отправной точкой стало изобретение парового двигателя, который мог обеспечить механическую мощность куда б0льшую, чем способны производить человек или животные и даже ветряные либо водяные мельницы. Кроме того, эта мощность может быть обеспечена в небольших или крупных масштабах, на ферме или на сталелитейном заводе и даже на движущемся объекте, например на борту паровоза или корабля.
За первые полвека преобразование тепловой энергии в механическую работу сделалось универсальным и необыкновенно разнообразным. Даже изобрели способ, при котором бы использовалась механическая работа для удаления тепла: нам дали холодильник! Затем применение нефтяного топлива в двигателях внутреннего сгорания еще больше увеличило тягу человека к машинам, вследствие чего сегодня все это сгоревшее горючее теперь находится в атмосфере в виде CO2…
Тепло, движение, энергия
Используемые в работе машин газы, такие как водяной пар, воздух, и вообще многообразные природные газы и жидкости обладают каждый или каждая своими характерными физическими свойствами, такими как плотность или теплоемкость (этим термином называется количество тепла, необходимое для повышения температуры единицы массы вещества на один градус). Чтобы эффективно применять указанные вещества на практике либо создавать принципиально новые системы, не было необходимости определять физические свойства веществ, исходя из универсальных принципов или микроскопических законов. Важно было создать корректную модель этих физических свойств, которая отличалась бы их независимостью от рассматриваемой системы, а затем с максимальной точностью измерить данные свойства. В те времена никто не знал, почему вода проявляет себя в трех состояниях (лед, жидкость, пар), но можно было точно вычислить, при каких давлениях и температурах она переходит из одного состояния в другое или какое количество тепла требуется для таяния 1 кг льда.
В результате появилась возможность объяснить поведение сложных систем, таких как паровой двигатель, холодильник или компрессор, на основании количественных измерений, проведенных в лаборатории с небольшими количествами вещества. Интуитивные величины, такие как температура и количество теплоты, получали все более и более конкретные определения. Появлялись и новые физические величины
Теория, которая сопровождала эти разработки, стала называться термодинамикой. С точки зрения современного физика, изучающего фундаментальные свойства материи или физику элементарных частиц, это на самом деле не теория: она не пытается объяснить мир, используя только уравнения, а скорее феноменологически описывает его. Математический аппарат данной теории был, по существу, неким упрощенным дифференциальным исчислением: чаще всего использовались линейные дифференциальные уравнения, что означает простую линейную зависимость между вариациями, или приращениями, связанных величин.
Для примера давайте рассмотрим небольшое количество водяного пара и измерим, как будет изменяться его давление при нагревании либо увеличении объема. Нам необходимо быть осторожными с определениями: мы нагреваем и позволяем объему увеличиваться или этот объем остается постоянным? Может быть, мы изменяем объем и позволяем температуре расти или мы сохраняем температуру постоянной с помощью внешнего теплового резервуара? И помимо дифференциального исчисления: а как насчет нелинейных систем?
Опять же термодинамика не мой конек, и все время, когда я получал свое образование, меня немного настораживали эти длинные ряды уравнений, управляющие давлением, объемом, температурой, энергией и энтропией… Мне приходилось скрупулезно изучать, как их использовать на практике, а также некоторые приложения к ним, но я редко видел глубокий смысл во всем этом. Меня постоянно мучили вопросы: почему эта величина объявлена постоянной? почему здесь только одна переменная?
Сегодня я могу с легкостью найти на просторах интернета курс термодинамики, написанный моим коллегой и другом[15], и прочесть в нем следующее:
«Это чрезвычайно сложное теоретическое приложение показывает, как можно вывести термодинамические соотношения практически без понимания их физических основ…»,
— что заставило меня искренне улыбнуться, вспомнив мои первые контакты с «Термо», как мы ее называли.
К счастью для меня, в дальнейшем мы изучали статистическую физику, которая объясняла все эти неведомо откуда взявшиеся формулы как результат коллективного движения большого числа атомов (или молекул), а затем проясняла и смысл некоторых физических величин. И все же, несмотря ни на что, эта полуэмпирическая, трудоемкая и «нефундаментальная» термодинамика все еще позволяет проектировать автомобильные двигатели (не электрические), холодильники и кондиционеры.
Глядя на законы Бойля-Мариотта или Гука, я снова очаровываюсь простотой этой интеллектуальной конструкции. Все ли в природе можно описать простыми отношениями пропорциональности? На самом деле существует невероятно много разделов физики, которые можно назвать «сложными», где переменные не пропорциональны друг другу. Их называют нелинейными, и иногда это очень сильно заметно: малое изменение одной величины приводит к огромному изменению другой.
Во всяком случае, интуиция любого человека (ученых это тоже касается) основана на простых отношениях: я тяну в два раза сильнее — пружина растягивается вдвое сильнее; я иду в два раза быстрее — путь домой займет у меня половину времени; я покупаю в два раза больше вещей — и это будет стоить мне в два раза больше. Хотя в последнем случае у всех есть хорошее представление о «нелинейности», так как если я покупаю в два раза больше вещей, то могу надеяться на скидку.