Введение в логику и научный метод
Шрифт:
2. Является ли доказательство окончательным?
3. От каких факторов или аспектов предметной области зависит окончательный характер доказательства?
Данные вопросы должны быть рассмотрены непосредственным образом, если мы хотим избежать путаницы в отношении философии доказательства.
1. Если доказательство является обоснованным, то тогда для всех возможных твердых тел и для всех жидкостей, выполняющих условия, сформулированные в постулате, отношения, описанные в суждении, должны иметь место. В отношении суждений невозможны никакие исключения, и при этом не требуется никакого эмпирического исследования жидкостей для того, чтобы мы могли быть в этом уверены. Данное суждение можно утверждать без опасения столкнуться с противоречием в каком-либо будущем эксперименте, если допускается постулат. Однако это квалификационное «если» является крайне важным. Оно напоминает о том, что мы не доказали материальную истинность данного суждения. Мы не показали, что в любом действительном объеме воды более плотное твердое тело будет
Быть может, Архимед полагал, что применимость данного постулата для всех жидкостей очевидна. Если так, то он, без сомнения, ошибался. Как мы уже отмечали, и как у нас еще не раз будет возможность убедиться, кажущаяся самоочевидность суждения не представляет окончательного основания его истинности. Однако независимо от того, считал он так или нет, истинность или ложность постулата в самом доказательстве не играет никакой роли. Повторим, что приведенное выше доказательство не доказывает материальной истинности суждения. Вопрос о том, какой тип оснований требуется для материальной истинности суждения, рассмотрен в главах VIII, XI, XIII и XIV. Здесь же нам нужно лишь подчеркнуть, что единственное, что окончательное доказательство может доказывать, это лишь существование необходимой связи между определяющими свойствами жидкостей и твердых тел и прочими их свойствами. Доказательство проявляет отношения импликации между суждениями, и ничего более. В доказательстве не дается ответа на вопрос о том, обладает ли какая-либо реальная жидкость свойствами, сформулированными в постулате.
Читатель может также отметить, что объем жидкости и размер погруженного в нее твердого тела не играет никакой роли в доказательстве, поскольку данное суждение следует из допущения относительно жидкостей как таковых, а не из допущений относительно жидкостей и твердых тел определенного объема. Таким образом, суждение может быть доказано, если посылки его имплицируют или, иными словами, если данное суждение является необходимым следствием посылок.
2. Пора переходить к рассмотрению второго вопроса: является ли данное доказательство окончательным? Прежде чем читатель определится с ответом, напомним ему, что доказательство является окончательным, только если суждение является необходимым следствием посылок. Доказательство не является окончательным, если помимо явно сформулированных посылок требуются еще и какие-либо другие посылки. Но как в таком случае мы можем быть уверены в том, что никакие посылки, помимо сформулированных, не требуются для того, чтобы имплицировать суждение? Есть только один способ это узнать. Мы должны разбить приведенное выше доказательство на ряд импликаций, каждая из которых не будет требовать никаких посылок, кроме тех, что сформулированы в явной форме. Проанализируем данное доказательство более детально.
Первая часть доказательства может быть сформулирована следующим образом:
Вторая часть доказательства может быть выражена следующим образом. Для удобства мы обозначим буквами каждый отдельный шаг.
Теперь мы видим, что целое доказательство может быть разложено на несколько разных шагов. Следовательно, доказательство является окончательным, если окончательным является каждый отдельный шаг. Таким образом, мы обнаруживаем, что суждение не может быть доказано, если мы допускаем только постулат. Нам также требуются четыре других допущения относительно суммируемой природы весов, объемов и сил, а также относительно постоянства плотности жидкости. Архимед не сформулировал данные допущения в явном виде, и поэтому предложенное им доказательство не является окончательным. Однако данные допущения имеют столь общую природу, что принимаются как данность практически в любом физическом исследовании. Тем не менее, крайне важно выражать их в явной форме, поскольку без них или их эквивалентов мы не сможем доказать гидростатический принцип Архимеда. Более того, в некоторых областях современной физики были обнаружены основания для сомнения в универсальной истинности некоторых из этих допущений. Подробное перечисление всех посылок или допущений играет крайне важную роль в развитии наук. 3. На данном этапе мы готовы ответить на третий вопрос: от каких факторов или аспектов предметной области зависит окончательный характер доказательства? Мы видели, что доказательство является окончательным, если в нем каждый отдельный шаг является окончательным. Но почему окончательным является каждый шаг? Ответ на этот вопрос мы уже обсудили во вводной главе. Каждый шаг является окончательным потому, что если посылки в этом шаге истинны, то заключение также должно быть истинным, т. е. отношения между посылками и заключением таковы,
§ 2. Некоторые ошибочные доказательства
Мы сможем более ясно осознать потребность в осторожном анализе умозаключений, если рассмотрим еще два примера исторически известных умозаключений.
1. Первый пример представляет попытку развить идеи Евклида. Свой великий труд «Начала» Евклид начал с двадцати трех определений, пяти аксиом (являвшихся недоказанными допущениями, общими для всех наук) и пяти постулатов (которые были недоказанными суждениями, относящимися только к геометрии). Пятый постулат (Книга I) является суждением о параллельных прямых, но Евклид не считал нужным его использовать до тех пор, пока не дошел до двадцать пятого суждения в своей книге. Если все другие аксиомы и постулаты Евклида представлялись его последователям самоочевидными, то пятый постулат, казалось, требовал доказательства. Прокл, математик V века, писал: «…тот факт, что когда уменьшаются прямые углы, прямые начинают сходиться, является истинным и необходимым; однако утверждение о том, что, поскольку они сходятся все больше по мере своего продолжения, они на определенном этапе пересекутся, является возможным, но не необходимым, если не будет предоставлен аргумент, показывающий истинность данного утверждения в случае прямых» [121] . На протяжении многих веков считалось, что введение пятого постулата без доказательства было серьезным недостатком «Начал», и осуществлялись множественные попытки его доказать.
Мы рассмотрим доказательство, предложенное Птолемеем и изложенное Проклом. Однако сначала нам нужно будет привести релевантные определения и постулаты Евклида. Согласно Евклиду (определение 23), параллельные прямые являются «прямыми линиями, которые находятся на одной плоскости и, будучи продолженными неограниченно в обе стороны, не пересекаются ни в одной стороне». Пятью постулатами являются следующие:
Постулат 1. От всякой точки до всякой точки можно провести прямую.
Постулат 2. Ограниченную прямую можно непрерывно продолжать по прямой.
Постулат 3. Из всякого центра всяким раствором может быть описан круг.
Постулат 4. Все прямые углы равны между собой.
Постулат 5. Если прямая, пересекающая две прямые, образует внутренние односторонние углы, меньшие двух прямых, то, продолженные неограниченно, эти две прямые встретятся с той стороны, где углы меньше двух прямых.
Евклид ввел этот последний постулат для того, чтобы доказать суждение (теорему) 29: «Прямая, пересекающая две параллельные прямые, делает противоположные углы равными друг другу, а внешний угол равным внутреннему углу и противолежащему углу, а внутренние углы на одной и той же стороне равными двум прямым». Чтобы доказать постулат о параллельных прямых, Птолемей сначала доказал теорему 29 без помощи этого постулата, а затем показал, что постулат является следствием этой теоремы. Воспроизведем предложенное им доказательство теоремы:
Прямая линия, пересекающая две параллельные прямые, должна делать сумму внутренних углов на одной и той же стороне равной, большей или меньшей двум прямым углам.
Пусть АВ, CD – параллельные прямые, и пусть FG – секущая прямая. Я говорю, 1) что FG не делает внутренние углы на одной и той же стороне больше, чем два прямых.
Поскольку если углы AFG и CGF больше двух прямых углов, то оставшиеся углы BFG и DGF – меньше двух прямых.
Однако эти же два угла оказываются больше двух прямых углов, ибо AF, CG являются такими же параллельными, как и FB, GD, поэтому, если прямая, пересекающая AF, CG, делает внутренние углы больше двух прямых, то прямая, пересекающая FB, GD, также сделает внутренние углы больше двух прямых.
Однако эти же углы также и меньше двух прямых углов, ибо четыре угла AFG, CGF\ BFG, DGF равны четырем прямым углам, что невозможно.
Сходным образом 2) мы можем показать, что прямая, пересекающая две параллельные прямые, не делает внутренние углы одной и той же стороны меньше, чем два прямых угла.
Однако 3) если она не делает их ни больше, ни меньше двух прямых углов, то она может сделать внутренние углы на одной и той же стороне только равными двум прямым углам» [122] .
Обосновано ли доказательство Птолемея? Следует ли теорема 29 с необходимостью из приведенных аксиом и постулатов без пятого постулата? Рассмотрим более подробно рассуждение, которое мы выделили курсивом. Птолемей утверждает, что если мы допустим, что углы AFG, CGF больше двух прямых углов, то мы также должны допустить, что BFG, DGF также больше (равно как и меньше) двух прямых углов, поскольку все, что истинно для внутренних углов, находящихся на одной стороне секущей FG, с необходимостью одновременно истинно и для внутренних углов, находящихся на другой стороне секущей. Однако данное допущение не включено в постулаты. Птолемей защищает его, утверждая, что AF, CG также параллельны в одном направлении, как FB, GD в другом. Однако это просто сводится к утверждению о том, что через точку F можно провести только одну прямую, параллельную прямой CD. Данное допущение в точности эквивалентно постулату 5, который он и пытается доказать [123] .