Чтение онлайн

на главную - закладки

Жанры

Избранные научные труды
Шрифт:

1 F. Kalckar, J. Oppenheimer, R. Serber. Phys. Rev., 1937, 52, 1251.

2 W. Воthe, W.Gentner. Naturwiss., 1937, 25, 90, 126.

3 Л. Д. Ландау. Sow. Phys., 1937, 11, 556.

VI. Более подробное рассмотрение условий применимости формулы испарения обычного типа к задачам ядерного распада даётся Вайскопфом в его недавней статье, упомянутой в добавлении II. В этой статье подробно обсуждается на основе общих методов статистической механики та ограниченность простых термодинамических аналогий в ядерных задачах, которая происходит от сравнительно малого числа степеней свободы рассматриваемой системы. Кроме того, в ней даются обобщения обычных термодинамических приемов, необходимые для правильной трактовки таких систем.

VII. Распределение энергии нейтронов, вылетающих из сильно возбуждённых ядер, особенно подробно изучалось для случая обычного источника нейтронов — бериллия, бомбардируемого -лучами. В этом случае распределение быстрых нейтронов оказывается в хорошем согласии

с ожидаемым теоретически; что касается менее быстрых нейтронов, то здесь наблюдается относительный избыток нейтронов, обладающих энергиями много ниже вычисленной температуры составного ядра. Однако это затруднение является только кажущимся. Оно исчезает, если предположить, что медленные нейтроны следует приписать некоторому более сложному процессу, как это было впервые предложено П. Оже 4. Первая стадия такого процесса состоит в испускании составной системой -луча, после чего остаётся ядро бериллия в возбуждённом состоянии; вторая стадия состоит в последующем распаде этого ядра на две -частицы и один медленный нейтрон. Эта картина процесса получила подтверждение в последних экспериментальных исследованиях Т. Бьерге 1.

4 P. Auger. J. Phys., 1933, 4, 719.

1 Т. Вjеrgе. Proc. Roy. Soc. (London), 1938, А164, 243.

VIII. Вопрос о квантовых резонансных эффектах в случае непрерывного распределения уровней недавно обсуждался Калькаром, Оппенгеймером и Сервером в статье, цитированной в добавлении V. Эта статья посвящена ядерному фотоэффекту, который представляет ряд особенностей, делающих его аналогичным задаче о превращениях ядра, вызванных столкновениями с медленными частицами. Более подробное квантовое исследование ядерных реакций будет дано в ближайшее время в статье Ф. Калькара, в которой будет сделана попытка развить общие соображения, подобные той трактовке задач атомного ядра, которая основана на принципе соответствия.

IX. Вопрос о правильной оценке ядерных радиусов путём анализа -распада радиоактивных ядер рассматривается далее Бете в его обзоре по ядерной динамике 2. В этом обзоре он широко пользуется увеличенными значениями ядерных радиусов, предложенными им 3. В связи с этим он высказывается также относительно той критики его способа вычисления радиусов ядер, которая приведена здесь в тексте и которая доложена на конференции в Вашингтоне (см. предисловие). Тем временем важные результаты в этом вопросе были получены в статье, приведённой в дополнении II. В этой работе удалось вывести из очень общих соображения широко применимую формулу для вероятности распада ядра, сопровождаемого вылетом заряженных частиц. Эта формула даёт зависимость этой вероятности от внешнего отталкивания, а также и от плотности распределения уровней ядра в рассматриваемой области энергий. В случае радиоактивного распада, где расстояния между уровнями достаточно велики, эта формула приводит к таким значениям радиусов ядер, которые лишь немного отличаются от значений, выведенных из обычных формул для потенциального барьера, но существенно отличаются от значений, предложенных Бете.

2 B'ethe. Rev. Mod. Phys., 1937, 9, 69.

3 B'ethe; Phys. Rev., 1936, 50, 977.

49 ПРЕВРАЩЕНИЯ АТОМНЫХ ЯДЕР * 1

*Transformations of Atomic Nuclei. Science, 1937, 86, 161—165.

1 Сокращенное изложение лекций, прочитанных весной 1937 г. в различных университетах Соединённых Штатов. Иллюстрации воспроизведены с трех слайдов, демонстрировавшихся на этих лекциях.

Раньше уже отмечалось 2, что для понимания типичных особенностей ядерных превращений, вызванных столкновениями материальных частиц, необходимо предположить, что первая стадия всякого процесса столкновения состоит в образовании промежуточной полустабильной системы из исходного ядра и падающей частицы. Надо также предположить, что избыток энергии в этом состоянии временно сосредоточивается в некоторых сложных движениях всех частиц составной системы. Возможный последующий развал этой системы с освобождением какой-либо элементарной или сложной ядерной частицы можно рассматривать с этой точки зрения как отдельное независимое событие, не связанное непосредственно с первой стадией процесса столкновения. Поэтому можно сказать, что конечный результат столкновения зависит от конкуренции между всеми процессами распада и излучения составной системы, согласующимися с законами сохранения.

2 N. Воhr. Nature, 1936, 137, 344 (статья 45.)

Простая механическая модель, иллюстрирующая эти особенности ядерных столкновений, показана на рис. 1. В мелкой чаше находится некоторое число биллиардных шаров. Если бы углубление чаши было пустым, то посланный в неё шар скатился бы по одному склону и вышел бы с другой стороны с прежней энергией. Однако, если в чаше находятся другие шары, то пущенный к ним шар не будет в состоянии свободно пройти через чашу; сначала он отдаст часть своей энергии одному из шаров, затем оба отдадут часть своей энергии другим шарам и так до тех пор, пока первоначальная кинетическая энергия не окажется распределённой по всем шарам. Если бы углубление и шары можно было считать, идеально гладкими и упругими, то столкновения продолжались бы до тех пор, пока достаточно

большая часть кинетической энергии не оказалась снова сосредоточенной на близком к краю шаре. Тогда этот шар покинул бы чашу, и если бы энергия пущенного шара была не очень велика, то полная энергия оставшихся шаров была бы недостаточна для того, чтобы позволить какому-либо из них подняться по склону. Если, однако, между шарами и чашей существует даже очень малое трение или если шары не являются абсолютно упругими, то вполне может оказаться, что ни один из шаров не будет иметь возможности выйти из чаши, прежде чем вследствие трения потеряется в виде тепла достаточно много энергии, так что оставшейся энергии окажется уже недостаточно для выбрасывания какого-либо из них.

Рис. 1

Такое сравнение очень удачно иллюстрирует, что происходит при соударении быстрого нейтрона и тяжёлого ядра. Ввиду большого количества частиц, из которых в этом случае состоит составная система, и ввиду их сильного взаимодействия друг с другом мы должны в действительности ожидать из этой простой механической аналогии, что время жизни промежуточного ядра будет очень велико по сравнению со временем, необходимым быстрому нейтрону, чтобы пройти через ядро. Эта аналогия объясняет прежде всего тот факт, что хотя вероятность излучения электромагнитной радиации тяжёлым ядром за такой промежуток времени чрезвычайно мала, тем не менее благодаря большому времени жизни составного ядра существует весьма значительная вероятность того, что система вместо освобождения нейтрона будет испускать избыточную энергию в виде электромагнитного излучения. Другим экспериментальным фактом, который легко понять из такой картины, является неожиданно большая вероятность неупругого столкновения, приводящего к эмиссии нейтрона с гораздо меньшей энергией, чем у падающего нейтрона. В самом деле, из приведённых выше соображений ясно, что процесс распада составной системы, который требует концентрации меньшего количества энергии на отдельной частице, будет значительно более вероятным, чем тот процесс распада, при котором весь избыток энергии окажется сосредоточенным на вылетевшей частице.

На первый взгляд, такая простая механическая трактовка противоречит факту, столь хорошо установленному при изучении -спектров, что ядра подобно атомам обладают дискретным распределением энергетических уровней: в приведённом выше обсуждении существенным являлось то, что составная система должна образовываться при практически любой кинетической энергии падающего нейтрона. Однако мы должны ясно представить себе, что при соударениях быстрых нейтронов мы имеем дело с возбуждением составной системы, гораздо большим энергии возбуждения обычных уровней, связанных с испусканием -лучей. В то время как последние достигают самое большее немногих миллионов электронвольт, возбуждение в первом случае будет значительно превышать энергию, необходимую для полного удаления нейтрона из ядра в нормальном состоянии, которую из измерений дефекта массы можно оценить примерно в 8 млн. электронвольт.

Рис. 2

Общий характер распределения уровней энергии тяжёлого ядра схематически иллюстрируется на рис. 2. Более низкие уровни, которые отстоят друг от друга в среднем на несколько сотен тысяч электронвольт, соответствуют уровням -лучей, найденным в радиоактивных ядрах. При увеличении возбуждения уровни быстро сближаются, а при возбуждении около 15 Мэв, соответствующем столкновению ядра с быстрым нейтроном, они распределены, вероятно, непрерывно. Характер строения верхней части схемы уровней показан с помощью двух линз с большим увеличением, показанных на диаграмме: одной в упомянутой выше области непрерывного распределения энергии и другой в области, соответствующей тому возбуждению, которое возникает в составной системе при присоединении очень медленного нейтрона к исходному ядру. Пунктирная линия в середине поля нижнего увеличительного стекла представляет энергию возбуждения составного ядра в том случае, когда кинетическая энергия падающего нейтрона в точности равна нулю. Поэтому расстояние от этой линии до основного состояния как раз равно энергии связи нейтрона в составной системе.

Информация о распределении уровней в области энергий, лежащей вблизи этой линии, может быть получена из опытов по захвату очень медленных нейтронов с энергией порядка доли электронвольта. Таким образом, если кинетическая энергия падающего нейтрона как раз соответствует энергии одного из стационарных состояний составной системы, то будут иметь место квантовомеханические резонансные эффекты, которые могут дать эффективные сечения захвата нейтронов, в несколько тысяч раз большие обычных ядерных сечений. Такие селективные эффекты действительно были найдены для ряда элементов, а затем было установлено, что ширина резонансной области во всех этих случаях составляет лишь малую долю электронвольта 3. Из относительного распространения селективного захвата нейтронов среди тяжёлых элементов и из остроты резонанса можно оценить, что среднее расстояние между уровнями в этой области энергий но порядку величины составляет 10—100 эв. В поле зрения нижнего увеличительного стекла на рис. 2 показано несколько таких уровней; то обстоятельство, что один из этих уровней лежит очень близко к пунктирной линии, соответствует в этом частном случае возможности селективного захвата очень медленных нейтронов.

Поделиться:
Популярные книги

Хроники странного королевства. Возвращение (Дилогия)

Панкеева Оксана Петровна
Хроники странного королевства
Фантастика:
фэнтези
9.30
рейтинг книги
Хроники странного королевства. Возвращение (Дилогия)

Матабар. II

Клеванский Кирилл Сергеевич
2. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар. II

Девочка для Генерала. Книга первая

Кистяева Марина
1. Любовь сильных мира сего
Любовные романы:
остросюжетные любовные романы
эро литература
4.67
рейтинг книги
Девочка для Генерала. Книга первая

Идеальный мир для Лекаря 2

Сапфир Олег
2. Лекарь
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 2

Пограничная река. (Тетралогия)

Каменистый Артем
Пограничная река
Фантастика:
фэнтези
боевая фантастика
9.13
рейтинг книги
Пограничная река. (Тетралогия)

Хозяйка забытой усадьбы

Воронцова Александра
5. Королевская охота
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Хозяйка забытой усадьбы

Боец с планеты Земля

Тимофеев Владимир
1. Потерявшийся
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
Боец с планеты Земля

Ротмистр Гордеев

Дашко Дмитрий Николаевич
1. Ротмистр Гордеев
Фантастика:
фэнтези
попаданцы
альтернативная история
5.00
рейтинг книги
Ротмистр Гордеев

Ритуал для призыва профессора

Лунёва Мария
Любовные романы:
любовно-фантастические романы
7.00
рейтинг книги
Ритуал для призыва профессора

Идеальный мир для Лекаря 6

Сапфир Олег
6. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 6

Хозяйка заброшенного поместья

Шнейдер Наталья
1. Хозяйка
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Хозяйка заброшенного поместья

Газлайтер. Том 4

Володин Григорий
4. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 4

Неудержимый. Книга XIII

Боярский Андрей
13. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XIII

Правильный попаданец

Дашко Дмитрий Николаевич
1. Мент
Фантастика:
альтернативная история
5.75
рейтинг книги
Правильный попаданец