Изложение системы мира
Шрифт:
Наконец, неравенство третьего спутника, во время его затмений сопоставленное с соответствующими положениями второго и третьего спутников, показывает, что и здесь существуют те же зависимости, какие имели место при сравнении неравенства второго спутника с соответствующими положениями первого и второго. Следовательно, в движении третьего спутника существует неравенство, пропорциональное синусу избытка средней долготы второго спутника над средней долготой третьего, неравенство, которое в своём максимуме равно 808сс [262"]. Если представить себе светило, угловое движение которого равно избытку среднего синодического движения второго спутника над удвоенным средним синодическим движением третьего, то неравенство третьего
Таков ход главных неравенств трёх первых спутников Юпитера, предугаданный Брадлеем и затем опубликованный Варгентином. Взаимное соответствие этих неравенств, а также средних движений и средних долгот этих спутников, как будто, создаёт особую систему из этих трёх тел, движимых, но всей видимости, общими силами, являющимися источником их общности.
Рассмотрим теперь спутники Сатурна. Если взять за единицу экваториальный полудиаметр этой планеты, видимый на её среднем расстоянии от Солнца и полагаемый равным 25сс [8"], средние расстояния спутников от её центра и времена их сидерических обращений будут следующими.
Среднее расстояние
Время обращения
I
3.351
0.
d
94271
II
4.300
1.37024
III
5.284
1.88780
IV
6.819
2.73948
V
9.524
4.51749
VI
22.081
15.94530
VII
64.359
79.32960
Сопоставляя время обращения спутников с их средними расстояниями от центра Сатурна, мы вновь находим прекрасное соотношение, открытое Кеплером для планет, которое, как мы уже видели, существует в системе спутников Юпитера, а именно, что квадраты времён обращения спутников Сатурна относятся между собой как кубы их средних расстояний от центра этой планеты.
Большая отдалённость спутников Сатурна и трудность наблюдения их положений не позволили обнаружить эллиптичность их орбит и, тем более, неравенства в их движениях. Однако эллиптичность орбиты шестого спутника всё же заметна.24
Возьмём теперь за единицу полудиаметр Урана, предположив что он, видимый на среднем расстоянии планеты от Солнца, равен 6cc [2"]. Тогда, по наблюдениям Гершеля, средние расстояния спутников от центра Урана и время их звёздного обращения будут следующими.
Среднее расстояние
Время обращения
I
13.120
5.
d
8926
II
17.022
8.7068
III
19.845
10.9611
IV
22.752
13.4559
V
45.507
38.0750
VI
91.008
107.6944
Эти времена обращения, за исключением второго и четвёртого спутников, были выведены из наибольших наблюдённых элонгаций и из закона, по которому квадраты времён обращения спутников относятся как кубы их средних расстояний от центра планеты, закона, который подтверждается наблюдениями второго
Каковы же главные силы, удерживающие планеты, их спутники и кометы на своих орбитах? Какие особые силы возмущают их эллиптическое движение? Какие причины заставляют отступать равноденствия и колебаться оси вращения Земли и Луны? Наконец, какими силами вода в морях поднимается два раза в сутки? Предположение об одном общем начале, от которого зависят все эти законы, достойно простоты и величия природы. Общность законов, представляющих движение небесных тел, по-видимому, указывает на существование такого начала. Его проявление предугадывается уже в связи этих явлений с соответствующим расположением тел солнечной системы. Но чтобы обнаружить его с полной очевидностью, необходимо знать законы движения материи.
Книга третья О ЗАКОНАХ ДВИЖЕНИЯ
В самом же деле, в морях, на Земле и в небесных высотах
Многоразличным путём совершается много движений
Перед глазами у нас.
Лукреций. О природе вещей, кн. I, 340—342.9
В бесконечном разнообразии явлений, непрерывно сменяющих друг друга в небесах и на Земле, мы распознали небольшое число основных законов, которым в своих движениях следует материя. Всё подчиняется им в природе, всё вытекает из них с такой же необходимостью, как смена времён года. Кривая, описанная лёгким атомом, который уносится ветром, казалось бы, по воле случая, на самом деле управляется этими законами с такой же определённостью, как и орбиты планет. Важность этих законов, от которых мы постоянно зависим, должна была бы возбуждать любопытство во все времена. Но из-за обычного для человеческого ума безразличия они не привлекли к себе внимания до начала предпоследнего века, эпохи, в которую Галилей наметил первые основания науки о движении своими прекрасными открытиями в области падения тел. Геометры, идя по его следам, свели наконец всю механику к общим формулам, которые не требуют теперь больше ничего, как лишь усовершенствования математического анализа.
Глава I О СИЛАХ, ИХ СЛОЖЕНИИ И О РАВНОВЕСИИ МАТЕРИАЛЬНОЙ ТОЧКИ
Тело представляется нам движущимся, если оно меняет своё положение по отношению к системе тел, которую мы считаем неподвижной. Так, на равномерно движущемся корабле тела кажутся нам движущимися, если они оказываются последовательно в разных его частях. Это движение лишь относительное, так как корабль движется по поверхности моря, которое вращается вокруг земной оси, а центр Земли обращается вокруг Солнца, которое само вместе с Землёй и планетами уносится в пространство. Чтобы понять, где же предел этих движений, и чтобы прийти к неподвижным точкам, от которых можно было бы отсчитывать абсолютные движения тел, воображают беспредельное и неподвижное пространство, проницаемое для материи. К частям этого пространства, реального или идеального, мы и относим мысленно положения тел. И мы считаем их движущимися, если они последовательно находятся в разных частях этого пространства.
Сущность этого своеобразного изменения, в силу которого тело переносится из одного места в другое, нам неизвестна и никогда не будет известна. Она была обозначена названием сила, и мы можем лишь определять её влияние и законы её действия.
Если ей ничего не противопоставляется, результат влияния силы на материальную точку выражается в том, что ей сообщается движение. Направление силы есть прямая, по которой она перемещает эту точку. Ясно, что если две силы действуют в одном направлении, они прибавляются одна к другой, а если они действуют в противоположных направлениях, точка движется только благодаря их разности и останется недвижной, если силы равны.