Изложение системы мира
Шрифт:
Если направления двух сил образуют между собой какой-либо угол, их равнодействующая примет среднее направление. С помощью одной только геометрии доказывается, что если из точки приложения сил провести представляющие их прямые и затем построить на этих отрезках параллелограмм, то его диагональ представит направление и величину результирующей силы.
Две составляющие силы можно заменить одной равнодействующей или, наоборот, одну какую-либо силу разложить на две, для которых она будет равнодействующей. Следовательно, одну силу можно разложить на две составляющие, параллельные двум взаимно перпендикулярным осям, лежащим в плоскости этой силы. Для этого достаточно через начало прямой, представляющей эту силу, провести две линии, параллельные
Если сила наклонена к заданной плоскости, то, отложив в направлении этой силы от точки, где она встречает эту плоскость, представляющий её отрезок и опустив из его конца на плоскость перпендикуляр, получим составляющую исходной силы, перпендикулярную этой плоскости. Проведённая в ней прямая, соединяющая силу и перпендикуляр, будет составляющей параллельной плоскости. Эта вторая, частная сила сама может быть разложена на две другие, параллельные двум взаимно перпендикулярным осям, расположенным в той же плоскости. Таким образом, всякая сила может быть разложена на три составляющие, параллельные трём взаимно перпендикулярным осям.
Отсюда рождается простой способ получения равнодействующей любого числа сил, действующих на материальную точку, так как, разлагая каждую из них на три другие, параллельные трём заданным взаимно перпендикулярным осям, все силы, параллельные каждой из осей, сводам к одной, равной сумме тех, которые действуют в одном направлении, без суммы сил, действующих в противоположном направлении. Таким образом, точка будет подвержена действию трёх взаимно перпендикулярных сил, и, если по направлению каждой из них отложить её величину от общего начала и на отложенных отрезках построить прямоугольный параллелепипед, его диагональ представит по направлению и величине равнодействующую всех сил, приложенных к данной точке.
Каковы бы ни были число, величина и направление этих сил, если каким-либо способом положение точки было изменено на бесконечно малую величину, произведение равнодействующей на величину перемещения в её направлении равно сумме произведений каждой силы на соответствующую ей величину. Величина, на которую точка перемещается в направлении силы, есть проекция прямой, соединяющей два положения точки, на направление силы. Эта величина считается отрицательной, если точка перемещается в направлении, обратном направлению силы.
Если точка свободна, то в состоянии равновесия равнодействующая всех сил равна нулю. Если это не так, равнодействующая сила должна быть перпендикулярна к поверхности или кривой, где находится эта точка, и тогда, если изменять положение точки на бесконечно малую величину, произведение равнодействующей на перемещение в её направлении равно нулю. Таким образом, это произведение вообще равно нулю, независимо от того, точка свободна или связана с кривой или плоскостью. Итак, во всех случаях, когда имеет место равновесие, при изменении положения точки на бесконечно малую величину сумма произведений каждой силы на перемещение точки в её направлении равна нулю, и равновесие продолжает существовать, если это условие выполнено.
Глава II О ДВИЖЕНИИ МАТЕРИАЛЬНОЙ ТОЧКИ
Покоящееся тело не может сообщить себе самому никого движения, так как не содержит в себе причины, побуждающей его двигаться в некотором направлении предпочтительнее, чем в другом. Если оно было подвергнуто действию какой-либо силы и затем предоставлено самому себе, оно движется непрерывно и равномерно в направлении действия этой силы, если не встречает никакого сопротивления, т.е. в каждый момент его сила и направление его движения одинаковы. Это стремление материи сохранять своё состояние движения или покоя называется инерцией. В этом состоит первый закон
Движение по прямой линии следует, очевидно, из того, что нет никакой причины, чтобы точка отклонялась скорее направо, чем налево от своего начального направления. Но равномерность её движения не так очевидна. Поскольку природа действующей силы неизвестна, невозможно знать a priori, должна ли эта сила непрерывно сохраняться. Однако поскольку тело не может само себе сообщить движение, представляется, что оно равным образом не способно изменить уже полученное им движение, поэтому закон инерции, по меньшей мере, самый естественный и самый простой из всех, какие можно себе представить. К тому же, он подтверждается опытом. В самом деле, на Земле мы наблюдаем, что движения сохраняются тем дольше, чем меньше противодействующих им препятствий. Это приводит нас к мысли, что в отсутствие препятствий тела двигались бы вечно. Но инерция материи очевидна главным образом в небесных движениях, которые за много веков не претерпели заметных изменений. Поэтому мы будем рассматривать инерцию как общий закон природы и, если мы наблюдаем изменение в движении тела, будем предполагать, что оно вызвано действием посторонней причины.
При равномерном движении пройденный путь пропорционален времени. Но время, затрачиваемое на прохождение определённого пути, может быть больше или меньше в зависимости от движущей силы. Это различие породило идею скорости, которая при равномерном движении определяется отношением пройденного пути к затраченному на его прохождение времени. Чтобы не сравнивать между собой разнородные величины, такие как пространство и время, берут интервал времени, например секунду, за единицу времени. Подобным же образом выбирают единицу длины, такую как метр, и тогда пространство и время представляются отвлечёнными числами, выражающими, сколько они заключают единиц своего рода, и их можно сравнивать между собой. Таким образом, скорость определяется отношением двух отвлечённых чисел, и её единица есть скорость тела, пробегающего один метр в секунду. Приводя таким образом расстояние, время и скорость к отвлечённым числам, мы видим, что расстояние равно произведению скорости на время, которое в свою очередь равно расстоянию, делённому на скорость.
Так как сила определяется только через путь, который она заставляет тело пройти в определённое время, естественно взять этот путь для её измерения. Но это предполагает, что несколько сил, одновременно и в одном направлении действующих на тело, заставят его пройти за единицу времени расстояние, равное сумме расстояний, которые заставили бы пройти каждая из них по отдельности, или, иначе говоря, сила пропорциональна скорости. A priori мы этого знать не можем, так как природа движущей силы нам неизвестна. Поэтому в этом вопросе мы снова должны обратиться к опыту, так как всё, что не является необходимым следствием из того немногого, что мы знаем о природе вещей, есть для нас лишь результат наблюдения.
Сила может быть выражена бесконечным числом функций скорости, не вносящих противоречий. Так, например, можно предположить, что она пропорциональна квадрату скорости. При таком предположении легко определить движение точки, увлекаемой любым числом сил, скорости которых известны. Так, если отложить на направлениях этих сил от начальной точки отрезки, выражающие скорости, которые они сообщили бы по отдельности каждой материальной точке, и исходя из этой же точки отложить в тех же направлениях другие отрезки, относящиеся между собой как квадраты первых, то эти отрезки могли бы представить эти самые силы. Далее, складывая их, как было указано, получим как направление результирующей силы, так и выражающий её отрезок. Из сказанного видно, как можно определить движение точки, какова бы ни была функция скорости, выражающая силу. Среди всевозможных математических функций исследуем ту, которая присуща природе.