Чтение онлайн

на главную - закладки

Жанры

Изложение системы мира
Шрифт:

Плотность молекулы атмосферного воздуха есть функция давления и температуры. Её вес почти в точности является функцией высоты над поверхностью Земли. Если бы её температура тоже была функцией этой высоты, уравнение равновесия атмосферы было бы дифференциальным уравнением, связывающим давление и температуру, и равновесие было бы возможно всегда. Но в природе в разных частях атмосферы температура зависит ещё от широты, от присутствия Солнца и от тысячи других переменных или постоянных причин, которые должны создавать в этой большой массе воздуха движения, часто очень значительные.

В силу подвижности своих частей весомая жидкость может создавать давления, гораздо большие своего веса. Так, например, узкий столб воды, оканчивающийся широкой горизонтальной поверхностью,

давит на основание, на котором эта поверхность находится, так же, как цилиндр воды такой же высоты и с таким же основанием. Чтобы лучше ощутить верность этого парадокса, представим себе неподвижный цилиндрический сосуд с горизонтальным подвижным дном. Предположим, что этот сосуд наполнен водой и его дно поддерживается уравновешивающей силой, равной и противоположной испытываемому им давлению. Ясно, что равновесие продолжало бы существовать, если бы часть воды затвердела и соединилась со стенками сосуда, поскольку равновесие системы тел не нарушится, если предположить, что некоторые из них объединились или соединились с неподвижными точками. Так можно создать бесчисленное множество сосудов различных форм, но с днищами и высотами, равными, соответственно, дну и высоте цилиндрического сосуда, в которых вода будет производить такое же давление на подвижное дно.

В общем случае, если жидкость действует только своим весом, давление, которое она создаёт на какую-либо площадь, равно весу столба этой жидкости, основание которого равно сжимаемой поверхности, а высота — расстоянию от её центра тяжести до поверхности уровня жидкости.

Тело, погруженное в жидкость или газ, теряет часть своего веса, равную весу вытесненного им объёма жидкости или газа. Так как до погружения тела окружающая жидкость (или газ) уравновешивала вес этого объёма жидкости (или газа), который, не нарушая равновесия системы, мы можем себе представить затвердевшим, равнодействующая всех воздействий жидкости (или газа) на эту массу должна уравновешивать её вес и проходить через её центр тяжести. Но совершенно ясно, что эти воздействия будут теми же, что и воздействия на тело, занимающее его место, и, таким образом, действие жидкости (или газа) уничтожает часть веса этого тела, равную весу вытесненной жидкости (или газа). Поэтому в воздухе тело весит меньше, чем в пустоте. Этой разницей, в большинстве случаев мало заметной, не следует пренебрегать при выполнении точных экспериментов.

С помощью весов, на одном конце коромысла которых подвешено тело, погружаемое в жидкость, можно точно измерить уменьшение его веса, происходящее при этом погружении, и определить его удельный вес или плотность по отношению к плотности жидкости. Удельный вес равен отношению веса тела в пустоте к его уменьшению при полном погружении в жидкость. Именно путём сравнения с максимумом плотности дистиллированной воды и были измерены удельные веса тел.

Чтобы тело, более лёгкое, чем жидкость, находилось в равновесии на её поверхности, надо, чтобы его вес был равен весу объёма вытесненной им жидкости. Кроме того, надо, чтобы центры тяжести этого объёма жидкости и тела находились на одной вертикали, так как равнодействующая силы тяжести, действующей на все молекулы тела, проходит через его центр тяжести, а равнодействующая всех действий жидкости на это тело проходит через центр тяжести вытесненного объёма жидкости. Эти равнодействующие, чтобы взаимно уничтожиться, должны располагаться на одной общей вертикали так же, как и центры тяжести. Но для устойчивости равновесия к двум предыдущим условиям необходимо добавить ещё другие. Устойчивость можно всегда определить по следующему правилу.

Если провести сечение плавающего тела поверхностью жидкости и через центр тяжести этого сечения вообразить такую горизонтальную ось, чтобы сумма произведений каждого элемента сечения на квадрат его расстояния от этой оси была наименьшей по сравнению со всеми другими горизонтальными осями, проведёнными через эту точку, то равновесие устойчиво во всех направлениях, если эта сумма превосходит произведение объёма вытесненной жидкости на высоту центра тяжести тела над центром тяжести этого объёма. Это правило особенно важно при строительстве судов, которым следует дать достаточную

устойчивость, необходимую для сопротивления волнам и ветру. В корабле ось, проведённая из кормы к носу, и есть та ось, по отношению к которой упомянутая сумма минимальна. Поэтому, используя это правило, легко определить его остойчивость.

Две жидкости, заключённые в один сосуд, располагаются таким образом, что более тяжёлая занимает низ сосуда, и поверхность, которая их разделяет, горизонтальна.

Когда две жидкости (или два газа) сообщаются с помощью очень широкой изогнутой трубки, поверхность, разделяющая их, при состоянии равновесия почти горизонтальна. Их высоты над этой поверхностью обратны их удельным весам. Поэтому если предположить, что вся атмосфера имеет плотность, равную плотности воздуха при температуре тающего льда и сжата давлением в 76 сантиметров ртутного столба, её высота оказалась бы равной 7963 м. Но так как плотность слоёв атмосферы уменьшается по мере поднятия над уровнем моря, высота атмосферы гораздо больше.

Глава V О ДВИЖЕНИИ СИСТЕМЫ ТЕЛ

Рассмотрим сначала действие двух материальных точек разной массы, которые, двигаясь по одной прямой, столкнулись между собой. Можно представить себе, что непосредственно перед соударением их движение разложено на одну общую скорость и две такие взаимно противоположные скорости, что, обладая только ими, эти точки уравновесились бы. Общая скорость двух точек не изменяется от их взаимодействия. Поэтому она сохранится и после столкновения. Для её определения заметим, что количество движения двух точек в силу этой общей скорости, вместе с суммой количеств движения, вызванных уничтоженными скоростями, представляет сумму количеств движения перед соударением, если только количества движения взять с разными знаками, т.е. с противоположными скоростями. Но, по условию равновесия, сумма количеств движения, вызванных уничтоженными скоростями, равна нулю. Поэтому количество движения, вызванное общей скоростью, равно количеству, которое существовало вначале у обеих точек. Следовательно, эта скорость равна сумме количеств движения, разделённой на сумму масс.

Случай соударения двух материальных точек — чисто идеальный. Но с ним легко сопоставить случай соударения каких-либо двух тел, отметив, что если тела соударяются, двигаясь по прямой, проходящей через их центры тяжести перпендикулярно к поверхности их контакта, они действуют друг на друга так, будто их массы были сосредоточены в этих центрах. Поэтому движение передаётся между ними так же, как между двумя материальными точками, массы которых, соответственно, равны массам рассматриваемых тел.

В предыдущем примере предполагается, что после соударения оба тела должны иметь общую скорость. Можно понять, что это справедливо для мягких тел, у которых передача движения происходит постепенно, незаметными изменениями, так как очевидно, что с того момента, когда ударенное тело приобретает скорость ударяющего тела, всякое взаимодействие между ними прекращается. Но между двумя абсолютно твёрдыми телами соударение происходит мгновенно, и не представляется обязательным, чтобы после него их скорости были одинаковы. Их взаимная непроницаемость требует только, чтобы скорость ударяющего тела была меньшей. В остальном она неопределенна. Эта неопределённость доказывает абсурдность гипотезы абсолютной твёрдости. В самом деле, в природе самые твёрдые тела, если и не упруги, то во всяком случае имеют некоторую неуловимую мягкость, которая делает их взаимные воздействия постепенными, хотя их продолжительность неощутима.

Когда тела абсолютно упруги, чтобы получить их скорость после соударения, нужно прибавить или вычесть из общей скорости, которую они получили бы, не будучи упругими, скорость, которую они приобрели бы или утратили в этом случае, так как совершённая упругость удваивает эти эффекты при упругой отдаче после вызванного ударом сжатия. Таким образом, скорость каждого тела после удара получают вычитанием его скорости перед ударом из удвоенной общей скорости.

Отсюда легко заключить, что сумма произведений масс на квадраты их скоростей остаётся одинаковой до и после соударения двух тел. Это же имеет место и при соударениях любого числа идеально упругих тел, при любом способе взаимодействия между ними.

Поделиться:
Популярные книги

Последняя Арена 5

Греков Сергей
5. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 5

#Бояръ-Аниме. Газлайтер. Том 11

Володин Григорий Григорьевич
11. История Телепата
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
#Бояръ-Аниме. Газлайтер. Том 11

Я уже князь. Книга XIX

Дрейк Сириус
19. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я уже князь. Книга XIX

Имперский Курьер

Бо Вова
1. Запечатанный мир
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Имперский Курьер

Курсант: Назад в СССР 10

Дамиров Рафаэль
10. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: Назад в СССР 10

Инквизитор Тьмы 2

Шмаков Алексей Семенович
2. Инквизитор Тьмы
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Инквизитор Тьмы 2

Соль этого лета

Рам Янка
1. Самбисты
Любовные романы:
современные любовные романы
6.00
рейтинг книги
Соль этого лета

Хорошая девочка

Кистяева Марина
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Хорошая девочка

Законы Рода. Том 2

Flow Ascold
2. Граф Берестьев
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 2

Кровь эльфов

Сапковский Анджей
3. Ведьмак
Фантастика:
фэнтези
9.23
рейтинг книги
Кровь эльфов

Позывной "Князь"

Котляров Лев
1. Князь Эгерман
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Позывной Князь

Эволюционер из трущоб. Том 5

Панарин Антон
5. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Эволюционер из трущоб. Том 5

Князь Мещерский

Дроздов Анатолий Федорович
3. Зауряд-врач
Фантастика:
альтернативная история
8.35
рейтинг книги
Князь Мещерский

Измена. Избранная для дракона

Солт Елена
Любовные романы:
любовно-фантастические романы
3.40
рейтинг книги
Измена. Избранная для дракона