Изложение системы мира
Шрифт:
Теперь, если представить себе два столба жидкости, направленных из центра сфероида: один — к полюсу, а другой — к какой-либо точке его поверхности, ясно, что если сфероид сжат очень мало, силы тяжести, разложенные по направлениям этих столбов, будут почти такими же, как и полные силы тяжести. Поэтому, разделив оба столба на равное число бесконечно малых частей, пропорциональных их длине, получим, что веса соответствующих частей будут относиться между собой как произведения длин этих столбов на вес в точках поверхности, где они кончаются. В результате полные веса этих столбов жидкости будут находиться в том же отношении. Для равновесия эти веса должны быть равны. Следовательно, веса на поверхности должны быть обратно пропорциональны длине столбов. А так как радиус экватора длиннее полярного на 1/230, вес на полюсе должен на 1/230 превышать вес на экваторе.
Это предполагает, что эллиптическая фигура удовлетворяет равновесию массы однородной жидкости, что показал Маклорен с помощью очень красивого метода, из которого следует, что в этом случае возможно точное равновесие и что, если эллипсоид сжат очень мало,
Одному и тому же вращательному движению соответствуют две различные фигуры равновесия, но равновесие не может существовать при любых таких движениях. Самая малая продолжительность одного оборота находящейся в равновесии однородной жидкости той же плотности, что и средняя плотность Земли, равна 0.1009 суток, и этот предел меняется обратно пропорционально квадратному корню из плотности. Когда вращение быстрее, жидкая масса сжимается с полюсов, что уменьшает продолжительность оборота до предела, требуемого состоянием её равновесия.
После большого числа колебаний жидкость из-за трения и сопротивления, которые она испытывает, стабилизируется в этом единственном и определяемом начальным движением состоянии, и, каковы бы ни были начальные силы молекул, ось, проходящая через центр тяжести жидкой массы, по отношению к которой первоначальный момент сил был наибольшим, становится осью вращения.
Изложенные результаты дают простой способ проверки предположения об однородности Земли. Нерегулярность градусов измеренных меридианов оставляет слишком большую неуверенность в величине сжатия Земли, чтобы определить, удовлетворяет ли оно, хотя бы приблизительно, высказанному предположению. Но довольно правильное возрастание тяжести от экватора к полюсам может пролить свет на этот вопрос. Если принять за единицу тяжесть на экваторе, её приращение на полюсе равно 0.00435 при условии, что Земля однородна. По наблюдениям маятников это приращение получается равным 0.0054. Следовательно, Земля — неоднородна. В самом деле, естественно думать, что плотность её слоёв увеличивается от поверхности к центру. Для устойчивости равновесия морей даже необходимо, чтобы их плотность была меньше средней плотности Земли. Иначе вода, движимая ветрами и другими причинами, часто выходила бы из своих пределов и затопляла бы континенты.
Поскольку однородность Земли исключается наблюдениями, для определения её фигуры необходимо рассматривать море как бы покрывающим некоторое ядро, плотность слоёв которого уменьшается от центра к поверхности. В своей прекрасной работе о фигуре Земли Клеро показал, что равновесие возможно также, если предположить эллиптическими фигуру её поверхности и слоёв её внутреннего ядра. При наиболее вероятных предположениях о законах плотности и эллиптичности этих слоёв сжатие Земли оказывается меньшим, чем в случае однородности, и большим, чем если бы сила тяжести была направлена в одну единственную точку. Возрастание тяжести от экватора к полюсам получается большим в первом случае, чем во втором. Но между полным приращением тяжести, взятой за единицу на экваторе, и эллиптичностью Земли существует замечательное соотношение. При любых гипотезах о структуре ядра, покрытого морем, насколько эллиптичность всей Земли меньше той, которая была бы в случае однородности, настолько же общее приращение тяжести больше того, которое было бы в этом же случае, и наоборот. Следовательно, сумма этого приращения и эллиптичности всегда одинакова и равна пятикратной половине отношения центробежной силы к силе тяжести на экваторе, что для Земли составляет 1/115.2.
Если предположить, что слои земного сфероида имеют эллиптическую форму, возрастание его радиусов и силы тяжести, а также уменьшение градусов меридиана от полюсов к экватору пропорциональны квадрату косинуса широты и связаны с эллиптичностью Земли таким образом, что полное возрастание радиусов равно этой эллиптичности; полное уменьшение градусов равно эллиптичности, умноженной на утроенную величину градуса на экваторе; и полное возрастание силы тяжести равно силе тяжести на экваторе, умноженной на избыток 1/115.2 над этой эллиптичностью. Таким образом, можно определить эллиптичность Земли либо путём градусных измерений, либо по наблюдениям маятников. Совокупность этих наблюдений даёт величину возрастания силы тяжести от экватора к полюсам, равную 0.0054. Вычитая эту величину из 1/115.2, получаем сжатие Земли равным 1/304.8. Если предположение об эллиптичности фигуры Земли соответствует природе вещей, это сжатие должно удовлетворять и градусным измерениям. Но оно, напротив, выявляет в них значительные погрешности, что вместе с трудностью приведения всех измерений к одному и тому же эллиптическому меридиану, по-видимому, указывает на то, что фигура Земли сложнее, чем думали раньше. Это не покажется удивительным, если принять во внимание неравномерность глубин морей, возвышение континентов и островов над их уровнем, высоту гор и неравномерность плотностей различных пород на поверхности этой планеты.
Чтобы наиболее полно охватить теорию фигуры Земли и планет, надо было бы определить притяжение сфероидов, мало отличающихся от сферы и образованных, следуя определённым законам, из переменных по форме и плотности слоёв. Кроме того, надо было бы определить фигуру, соответствующую равновесию жидкости, покрывающей её поверхность, так как необходимо представлять себе планеты покрытыми, как и Земля, находящейся в равновесии жидкостью, поскольку иначе их фигура была бы совершенно. произвольной. Даламбер дал для этого хитроумный метод, применимый к большому числу разных случаев. Но этому методу не хватает той простоты, которая столь желательна в таких сложных изысканиях и составляет их главное достоинство. Одно замечательное уравнение в частных производных,
Выражения, о которых я говорил, дают прямое и общее решение проблемы, состоящей в определении фигуры равновесия жидкой массы, если предположить, что она вращается и состоит из бесконечного множества жидкостей любых плотностей, все молекулы которых притягиваются пропорционально массам и обратно пропорционально квадратам расстояний. Лежандр уже решил эту проблему очень остроумным анализом, предположив массу однородной. В общем случае жидкость обязательно принимает форму эллипсоида вращения, у которого все слои эллиптичны и уменьшаются по плотности, а эллиптичность возрастает от центра к поверхности. Границы сжатия всего эллипсоида лежат в пределах от 5/4 до 1/2 отношения центробежной силы к силе тяжести на экваторе. Первый предел относится к однородной массе, а второй — к тому случаю, когда слои, бесконечно близкие к центру, бесконечно плотны, и вся масса сфероида может рассматриваться собранной в этой точке. В этом последнем случае сила тяжести была бы обратно пропорциональна квадрату расстояния и направлена в эту единственную точку. Поэтому фигура Земли была бы такой, как мы определили выше. Но в общем случае линия, определяющая направление силы тяжести от центра к поверхности сфероида, представляет собой кривую, каждый элемент которой перпендикулярен к пересекаемому им слою.
Упомянутый мной анализ предполагает, что земной сфероид полностью покрыт морем. Но так как в действительности жидкость оставляет непокрытой значительную часть сфероида, этот анализ, несмотря на свой общий характер, не воспроизводит в точности природу, и необходимо изменить выводы, полученные при предположении о полном покрытии сфероида водой. Правда, в этом случае математическая теория фигуры Земли представляет большие затруднения, но прогресс анализа, особенно в этой части, даёт средство преодолеть возникающие трудности и рассматривать континенты и моря такими, какими их дают наблюдения. Приближаясь таким путём к природе, можно понять причины многих важных явлений, известных нам из естественной истории и геологии, что может пролить яркий свет на эти две науки, присоединив их к теории системы мира. Вот главные результаты моего анализа. Одним из наиболее интересных является следующая теорема, неоспоримо устанавливающая неоднородность слоёв земного сфероида: если к длине секундного маятника, определённой из наблюдений в какой-либо точке поверхности земного сфероида, прибавить произведение этой длины на половину высоты этой точки над уровнем океана, определённой с помощью барометра и разделённой на полярную полуось, возрастание исправленной таким образом длины от экватора к полюсам при предположении, что плотность Земли глубже некоторой незначительной величины становится постоянной, будет равно произведению этой длины на экваторе на квадрат синуса широты и на 5/4 отношения центробежной силы к силе тяжести на экваторе36, или на 0.0043.
Эта теорема, к которой меня привело дифференциальное уравнение первого порядка, действительное для поверхности однородных сфероидов, мало отличающихся от сферы, в общем случае справедлива, каковы бы пи были плотность моря и то, как оно покрывает часть суши. Она замечательна тем, что не предполагает известными ни фигуру земного сфероида, ни конфигурацию моря, т.е. фигур, которые невозможно было бы получить.
Опыты, произведённые в обоих полушариях с маятниками, согласуются в том, что коэффициент при квадрате синуса широты больше 0.0043 и очень близок к 0.0054 длины маятника на экваторе. Таким образом, эти опыты доказывают, что внутренность Земли неоднородна. Кроме того, из сравнения их с результатами анализа видно, что плотность земных слоёв возрастает от поверхности к центру.
Правильность, с которой наблюдённые длины секундных маятников следуют закону квадрата синуса широты, доказывает, что эти слои равномерно расположены вокруг центра тяжести Земли и форма их близка к эллипсоиду вращения.
Эллиптичность земного сфероида может быть определена измерением градусов меридиана. Но попарное сравнение различных измерений даёт значительно различающиеся эллиптичности, так что изменение длины градуса не так точно следует закону квадрата синуса широты, как изменение силы тяжести. Это зависит от вторых производных земного радиуса, которые присутствуют в выражениях градуса меридиана и радиуса оскулирующей окружности, тогда как выражение силы тяжести содержит только первые производные этого радиуса, небольшие отклонения которого от радиуса эллипса возрастают при последовательных дифференцированиях. Однако если сравнить такие отдалённые друг от друга градусы, как градусы во Франции и на экваторе, их аномалии должны быть мало заметны в их разностях, и из этого сравнения мы находим, что эллиптичность земного сфероида равна 1/308.