Чтение онлайн

на главную - закладки

Жанры

Изложение системы мира
Шрифт:

Влияние планет создаёт в движениях комет неравенства, заметные главным образом по промежуткам между их возвращениями к перигелию. Галлей, заметив, что элементы орбит комет, наблюдённых в 1531, 1607 и 1682 гг., были почти одинаковыми, заключил из этого, что они принадлежали одной и той же комете, которая за промежуток в 151 год сделала два обращения. На самом деле период её обращения был на 13 месяцев продолжительнее в интервале с 1531 по 1607 г., чем с 1607 по 1682 г. Но этот великий астроном не без основания подумал, что притяжение планет, и в особенности Юпитера и Сатурна, могло вызвать эту разницу. В соответствии с несколько неопределённой оценкой этого действия в течение следующего периода обращения он пришёл к выводу, что оно должно будет замедлить следующее возвращение кометы, и установил его дату на конец 1758 или начало 1759 г. Это сообщение было очень важным само по себе и слишком тесно связано с теорией всемирного тяготения, которой геометры середины прошлого века усиленно занимались с целью расширить область её приложения. Поэтому оно не могло не возбудить любопытство всех интересующихся успехами наук и, в особенности теорией, которая уже согласовывалась с большим числом явлений. Неуверенные во времени появления кометы астрономы искали её начиная с 1757 г., и Клеро, одним из первых разрешивший задачу трёх тел, приложил своё решение к поискам тех изменений, которые движение кометы испытывало под воздействием Юпитера и Сатурна. 14 ноября 1758 г. он доложил Академии наук, что время возвращения кометы к своему перигелию будет в этом обращении

приблизительно на 618 суток длиннее, чем было в предыдущем, и поэтому комета пройдёт перигелий около середины апреля 1759 г. В то же время он отметил, что некоторые небольшие величины, не принятые им во внимание в его приближениях, могут на месяц передвинуть вперёд или назад эту дату. Он отметил ещё, что «тело, проходящее по таким отдалённым районам и исчезающее из наших глаз на столь длинные промежутки времени, могло быть подвержено действию совершенно незнакомых нам сил, таких как влияние других комет или даже какой-либо планеты, всегда настолько удалённой от Солнца, что она никогда не сможет быть обнаружена». Этот геометр получил удовлетворение, увидев своё предсказание сбывшимся: комета прошла перигелий 12 марта 1759 г. — в пределах допускавшейся им ошибки в вычислениях. После новой ревизии своих расчётов, Клеро определил дату этого прохождения на 4 апреля и передвинул бы её на 24 марта, т.е. на дату, отстоящую всего на 12 суток от фактического момента наблюдения, если бы использовал значение массы Сатурна, приведённое в предыдущей главе. Эта разница покажется очень маленькой, если принять во внимание большое число пренебрежённых им величин и возможное влияние планеты Уран, о существовании которой во времена Клеро было неизвестно.

Заметим, к чести прогресса человеческого разума, что на эту комету, которая в прошлом веке возбуждала живейший интерес среди астрономов и геометров, смотрели совсем иначе четырьмя её обращениями раньше, в 1456 г. Длинный хвост, тянувшийся за ней, наводил ужас в Европе, уже подавленной быстрыми успехами турок, ниспровергнувших Византию, и папа Каликст повелел совершать публичные моления, в которых заклинали комету и турок. В это невежественное время люди были далеки от мысли, что природа всегда послушна неизменным законам. В зависимости от того, регулярно ли следовали одни за другими явления или без видимого порядка, их считали зависящими от конечных причин или от случая. А когда явления были необыкновенными и казались противоречащими естественному порядку вещей, их рассматривали как знак небесного гнева.

Страхи, вызываемые некогда появлением комет, сменились боязнью, что какая-нибудь из множества комет, пересекающих во всех направлениях планетную систему, разрушит Землю. Они с такой скоростью проводят мимо нас, что влияния их притяжения не следует бояться. Только столкнувшись с Землёй, они могут причинить гибельные разрушения. Но это столкновение, хотя и возможно, очень маловероятно в интервале одного века. Для столкновения двух тел, столь малых в сравнении с необъятным пространством, в котором они движутся, нужно такое необыкновенное стечение обстоятельств, что не может возникнуть разумного опасения в этом отношении. Однако малая вероятность такой встречи, накапливаясь в течение многих лет, может сделаться очень большой. Легко представить себе действие такого удара о Землю. Ось вращения и вращательное движение Земли изменятся. Моря покинут свои прежние места и устремятся к новому экватору. Большая часть людей и животных потонут в этом всемирном потопе или погибнут от сильнейшего сотрясения, испытанного земным шаром. Какие-то виды живых существ погибнут целиком. Все сооружения, созданные деятельностью человека, разрушатся. Вот каковы бедствия, которые произвёл бы удар кометы, если бы её масса была сравнима с массой Земли. Мы видим из этого, почему Океан покрывал высокие горы, на которых он оставил неоспоримые следы своего присутствия. Мы видим, почему животные и растения юга могли существовать в северных странах, где находят их останки и следы. Наконец, становится объяснимым недолгий срок существования культурного мира, несомненные памятники которого не старше пяти тысячелетий. Человеческий род, сокращённый до небольшого числа индивидуумов и в самом жалком состоянии занятый в течение очень продолжительного времени единственной заботой — сохранением своего существования, должен был полностью потерять память о науках и искусствах, и когда успехи цивилизации вновь дали почувствовать в них нужду, пришлось начинать всё сначала, как если бы люди заново заселили Землю.

Какова бы ни была причина, приписанная некоторыми философами этим явлениям, я повторяю, мы должны успокоиться насчёт повторения такого страшного события во время короткого промежутка жизни, тем более, что, по-видимому, массы комет исключительно малы, и поэтому их удар может произвести только местные разрушения. Но человек так склонён к боязни, что мы видели в 1773 г., как после простого извещения о мемуаре Лаланда, где он перечислил те из наблюдённых комет, которые могут ближе всего подойти к Земле, в Париже распространился сильнейший страх, передавшийся затем всей Франции. Вот в какой мере верно, что заблуждения, суеверия, напрасные страхи и всё зло, являющееся следствием незнания, быстро возобновились бы, если бы потух светоч науки.

Наблюдения кометы, появившейся в 1770 г., привели астрономов к необыкновенному результату. После безуспешных попыток подчинить эти наблюдения законам параболического движения, до сих пор почти точно представлявшего движение комет, астрономы наконец поняли, что во время своего появления она описывала эллипс, в котором продолжительность её обращения не превышала 6 лет. Лексель, впервые сделавший этот интересный вывод, удовлетворил таким образом всем наблюдениям этой кометы. Но такая короткая продолжительность могла быть принята только после неопровержимых доказательств, основанных на новых и углублённых исследованиях наблюдений кометы и положений звёзд, к которым её относили. Академия наук предложила премию за эти исследования, которую получил Буркхардт. Его исследования привели почти точно к результатам Лекселя, относительно которых теперь не должно оставаться никаких сомнений. Комета, имеющая такое быстрое обращение, должна была бы часто появляться. Однако она не наблюдалась ранее 1770 г., да и после него её больше не видели. Чтобы объяснить это, Лексель заметил, что в 1767 и 1779 гг. эта комета очень близко приближалась к Юпитеру, сильное притяжение которого уменьшило в 1767 г. перигельное расстояние её орбиты настолько, что она стала видима в 1770 г., тогда как раньше не была видна. Затем, в 1779 г., это расстояние вновь увеличилось, и комета навсегда сделалась невидимой. Но необходимо было доказать возможность этих двух воздействий притяжения Юпитера и показать, что элементы эллипса, описанного кометой, могли им удовлетворить. Я это сделал, подвергнув этот предмет анализу, благодаря которому предыдущее объяснение стало правдоподобным.

Из всех наблюдённых комет эта больше всего приближалась к Земле, которая должна была бы испытать заметное воздействие, если бы масса этой кометы была сравнима с массой земного шара. Если предположить, что эти две массы одинаковы, действие кометы должно было бы увеличить продолжительность звёздного года на 11612c [10033s]. Но, исходя из многочисленных сравнений наблюдений, сделанных Деламбром и Буркхардтом при составлении солнечных таблиц, мы вполне уверены, что с 1770 г. звёздный год не прибавился даже на 3c [2.6s]. Поэтому масса кометы не превышает 1/5000 массы Земли и, если принять во внимание, что в 1767 и 1779 гг. это светило пересекло систему спутников Юпитера, не вызвав в ней ни малейших нарушений, можно заключить, что она даже ещё меньше. Малость масс комет вообще подтверждается незаметностью их влияния на

движение тел планетной системы. Эти движения представляются одним только действием тел этой системы с такой точностью, что небольшие отклонения наших лучших таблиц можно приписать одним лишь погрешностям приближений и ошибкам наблюдений. Но только очень точные наблюдения, выполняемые в течение нескольких веков и сравниваемые с теорией, могут осветить этот важный вопрос системы мира.

Глава V О ВОЗМУЩЕНИЯХ ДВИЖЕНИЯ ЛУНЫ

Луна одновременно притягивается и Солнцем и Землёй. Её движение вокруг Земли нарушается только разностью действия Солнца на эти два тела. Если бы Солнце находилось на бесконечно большом расстоянии, оно действовало бы на них одинаково по параллельным направлениям. Их относительное движение не было бы искажено этим действием, общим для них обоих. Но расстояние до Солнца, хотя и очень большое по сравнению с расстоянием до Луны, не может считаться бесконечным. Луна попеременно находится то ближе, то дальше от Солнца, чем Земля, и прямая, соединяющая её центр с центром Солнца, составляет более или менее острые углы с радиусом-вектором Земли. Поэтому на Землю и на Луну Солнце действует неодинаково и в разных направлениях. От этого различия его действий в лунном движении должны появляться неравенства, зависящие от взаимного положения Солнца и Луны. В исследованиях этих неравенств заключается знаменитая задача трёх тел, точное решение которой превосходит возможности математического анализа. Однако она может быть решена методом приближений благодаря близости Луны по сравнению с её расстоянием до Солнца и малости её массы по сравнению с массой Земли. Тем не менее необходим очень тонкий анализ, чтобы выделить все члены, имеющие заметное влияние. Наиболее важным пунктом этого анализа является рассмотрение этих членов, если поставлена задача улучшения лунных таблиц, что должно быть главной целью работы. Можно легко представить себе множество различных способов составления уравнений для решения проблемы трёх тел. Но главная трудность заключается в том, чтобы в дифференциальных уравнениях распознать и точно определить те члены, которые, будучи сами по себе очень маленькими, достигают заметной величины при последовательных интегрированиях; это требует иаивыгоднейшего выбора координат, тщательного рассмотрения природы интегралов, хорошо проведённых приближений и тщательных вычислений, проверенных много раз. Я поставил своей задачей выполнить все эти условия в теории движения Луны, приведённой в моей «Небесной механике», и имел удовлетворение видеть, что мои результаты совпадают с теми, которые Мейсон и Бюрг получили путём сравнения почти 5000 наблюдений Брадлея и Маскелайна; эти наблюдения придали лунным таблицам точность, которую будет трудно превзойти, и именно ей география и главным образом мореходная астрономия обязаны своим прогрессом. Здесь следует сказать, что Майер по праву считается одним из величайших астрономов, которые когда-либо существовали. Он первый придал этим таблицам ту степень точности, которая необходима для этого важного дела. Мейсон и Бюрг сохранили приданную им форму таблиц. Они исправили коэффициенты предложенных им неравенств и прибавили ещё несколько других неравенств, указанных в его теории. Кроме того, изобретением повторительного круга, значительно усовершенствованного Борда, Майер придал наблюдениям на море ту же точность, какую он внёс в лунные таблицы. Наконец, Буркхардт усовершенствовал лунные таблицы, придав их аргументам более простую и удобную форму и определив их коэффициенты по всей совокупности современных наблюдений. Задачей моей теории было показать, что закон всемирного тяготения является единственным источником всех неравенств лунного движения, и затем воспользоваться этим законом для улучшения таблиц и для вывода некоторых важных элементов системы мира, таких как вековые уравнения Луны, её параллакс, параллакс Солнца и сжатие Земли. К счастью, когда я занимался этими исследованиями, Бюрг, со своей стороны, работал над улучшением лунных таблиц. Мой анализ дал ему несколько новых, очень важных уравнений, и сравнение с большим числом наблюдений, которое он сделал, подтвердило их справедливость и пролило новый свет на элементы, о которых я только что говорил.

Движения узлов и перигея Луны — вот главные следствия возмущений, испытываемых этим светилом. Первое приближение дало геометрам сперва только половину второго из этих движений. Отсюда Клеро заключил, что закон притяжения не так прост, как это до сих пор считалось, и что он состоит из двух частей, из которых первая обратно пропорциональна квадрату расстояния и одна только действует на больших расстояниях, отделяющих планеты от Солнца, а другая возрастает в большем отношении при уменьшении расстояния и становится заметной на расстоянии Луны от Земли. Это заключение оспаривалось Бюффоном. Он основывался на том, что изначальные законы природы должны быть самыми простыми, они не могут зависеть более чем от одного модуля, и их выражение не может включать больше одного члена. Это соображение, несомненно, должно привести нас к тому, чтобы не усложнять закон притяжения иначе, как лишь при крайней надобности. Но незнание нами природы этой силы не позволяет уверенно говорить о простоте её выражения. Как бы то ни было, метафизик был на этот раз ближе к истине, чем геометр, который сам обнаружил свою ошибку и сделал важное замечание, что при дальнейших приближениях закон тяготения даёт движение лунного перигея, в точности совпадающее с наблюдениями. Впоследствии это было подтверждено всеми, кто занимался этим предметом. Движение, выведенное мной из моей теории, отличается от истинного не больше чем на 1/440 его часть. Что касается движения узлов, эта разность не превосходит 1/350 части.

Чтобы показать зависимость всех неравенств движения Луны от совместного действия Солнца и Земли на нашего спутника, необходим математический анализ. Однако, не прибегая к нему, можно объяснить причины возникновения годичного и векового лунных уравнений. Я тем охотнее остановлюсь на их описании, что при этом будет видно зарождение самых больших лунных неравенств, которые до сих пор оставались мало заметными, но по прошествии веков должны раскрыться наблюдателям.

Во время соединений с Солнцем Луна находится ближе к нему, чем Земля, и испытывает с его стороны более значительное влияние. При этом разность притяжения Солнцем этих двух тел стремится уменьшить притяжение Луны к Земле. Подобным же образом во время противостояний Луны и Солнца Луна более удалена от Солнца, чем Земля, и притягивается им слабее; поэтому разность солнечных притяжений опять стремится уменьшить притяжение Луны. В этих двух случаях указанное уменьшение почти одинаково и равно удвоенному произведению массы Солнца на частное от деления радиуса лунной орбиты на куб расстояния Солнца от Земли. В квадратурах действие Солнца на Луну, разложенное по направлению лунного радиуса-вектора, стремится увеличить притяжение Луны к Земле, но это увеличение равно лишь половине уменьшения притяжения, испытываемого Луной в сизигиях. Итак, в результате всех влияний Солнца на Луну в течение её синодического обращения возникает средняя сила, направленная вдоль радиуса-вектора Луны, уменьшающая силу тяготения этого светила и равная половине произведения массы Солнца на частное от деления этого радиуса на куб расстояния от Солнца до Земли.

Чтобы получить отношение этого произведения к силе тяготения Луны, заметим, что эта сила, удерживающая её на орбите, почти в точности равна сумме масс Земли и Луны, разделённой на квадрат расстояния между ними, и что сила, удерживающая на орбите Землю, близка к массе Солнца, делённой на квадрат его расстояния до Земли. В соответствии с теорией центростремительных сил, изложенной в третьей главе, эти две силы относятся как радиусы орбит Луны и Солнца, разделённые, соответственно, на квадраты периодов обращения этих светил. Отсюда следует, что упоминавшееся выше произведение относится к силе тяготения Луны как квадрат времени звёздного обращения Луны относится к квадрату времени звёздного обращения Земли. Поэтому вышеуказанное произведение почти точно равно 1/179 этого тяготения, которое средним влиянием Солнца уменьшается, таким образов, на 1/358 своей величины.

Поделиться:
Популярные книги

На границе империй. Том 7. Часть 3

INDIGO
9. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.40
рейтинг книги
На границе империй. Том 7. Часть 3

Хозяйка покинутой усадьбы

Нова Юлия
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Хозяйка покинутой усадьбы

Сумеречный стрелок

Карелин Сергей Витальевич
1. Сумеречный стрелок
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный стрелок

Барону наплевать на правила

Ренгач Евгений
7. Закон сильного
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Барону наплевать на правила

Сумеречный Стрелок 2

Карелин Сергей Витальевич
2. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 2

Книга пяти колец. Том 4

Зайцев Константин
4. Книга пяти колец
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Книга пяти колец. Том 4

Младший сын князя. Том 8

Ткачев Андрей Сергеевич
8. Аналитик
Старинная литература:
прочая старинная литература
5.00
рейтинг книги
Младший сын князя. Том 8

Архил...?

Кожевников Павел
1. Архил...?
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Архил...?

#Бояръ-Аниме. Газлайтер. Том 11

Володин Григорий Григорьевич
11. История Телепата
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
#Бояръ-Аниме. Газлайтер. Том 11

Курсант: Назад в СССР 10

Дамиров Рафаэль
10. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: Назад в СССР 10

Страж Кодекса. Книга III

Романов Илья Николаевич
3. КО: Страж Кодекса
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Страж Кодекса. Книга III

Мастеровой

Дроздов Анатолий Федорович
Фантастика:
фэнтези
боевая фантастика
альтернативная история
7.40
рейтинг книги
Мастеровой

Попаданка в деле, или Ваш любимый доктор - 2

Марей Соня
2. Попаданка в деле, или Ваш любимый доктор
Любовные романы:
любовно-фантастические романы
7.43
рейтинг книги
Попаданка в деле, или Ваш любимый доктор - 2

Ваше Сиятельство 3

Моури Эрли
3. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ваше Сиятельство 3