Изложение системы мира
Шрифт:
Эти эксперименты могут служить для определения соотношения сил, притягивающих разные вещества к одной и той же жидкости. Сделав из этих веществ очень толстые диски равного диаметра и прилагая их к поверхности безграничной массы этой жидкости, путём анализа находим, что интенсивности этих притяжений при равных объёмах, соответственно, пропорциональны квадратам веса грузов, необходимых, чтобы оторвать диски от жидкости. Когда сила, притягивающая диск к жидкости, превышает силу притяжения жидкости к самой себе, опыт позволяет узнать только эту последнюю силу, так как тогда жидкая плёнка сильно прилипает к нижней поверхности диска и образует новый диск, который и поднимает жидкость. По этой причине все диски одинаковой формы и величины, сделанные из различных смачиваемых водой материалов, таких как стекло, мрамор и металлы, одинаково прилипают к этой жидкости. Но в случае, если притяжение диска меньше, трение жидкости о диск и её вязкость вносят большие различия в результаты опытов по сцеплению её с поверхностью диска. Г-н Гей-Люссак обнаружил это в тех опытах, которые он провёл, изучая сцепление стеклянного диска со ртутью. На основании ранее сказанного максимум
Притяжение и отталкивание маленьких тел, плавающих на поверхности жидкости,— вот ещё капиллярные явления, которые можно подвергнуть анализу. Вообразим две параллельные плоскости, сделанные из одинакового материала и вертикально погруженные своими нижними концами в безграничную жидкость. Предположим сперва, что эта жидкость опускается между ними. Ясно, что между плоскостями это понижение будет значительнее, чем снаружи от них, и тем больше, чем больше эти плоскости сближены. В силу этой разности плоскости, очевидно, будут придавлены одна к другой наружной жидкостью. Получается тот же эффект, если жидкость поднимается между плоскостями. Чтобы это показать, вообразим во внутренней жидкости бесконечно узкий вертикальный канал, проходящий через самую низкую точку её поверхности, и предположим, что этот канал изгибается горизонтально, чтобы закончиться в точке внутренней поверхности одной из плоскостей, более поднятой, чем наружная жидкость. Эта точка будет испытывать в первую очередь давление атмосферы, а затем давление жидкости, содержащейся в вертикальной ветви канала. Но эти давления уменьшаются действием жидкого мениска, который отсекается касательной плоскостью в самой нижней точке поверхности внутренней жидкости, и это действие уравновешивается весом всего столба жидкости, содержащейся в вертикальной ветви канала, если предположить, что она продолжается до поверхности уровня неограниченной жидкости. Поэтому, внутренняя точка плоскости испытывает давление, меньшее атмосферного, которое прижимает соответствующую внешнюю точку. Эта разность давлений стремится сблизить обе плоскости. Анализ приводит к такой теореме: независимо от того, поднимается или опускается жидкость между плоскостями, давление, которое каждая плоскость оказывает на другую, равно весу жидкой призмы, высота которой есть полуразность поднятия крайних точек контакта с жидкостью внутри и снаружи плоскости, а основание есть часть плоскости, заключённой между горизонтальными линиями, проведёнными через эти точки. Отсюда следует, что когда плоскости очень сближены, их стремление соединиться возрастает в отношении, обратном квадрату их взаимного расстояния. Таким образом, с помощью промежуточной жидкости силы, действие которых чувствительно только на неуловимых расстояниях, производят силу, действующую на заметных расстояниях, по закону всемирного тяготения.
Если две плоскости сделаны из таких различных материалов, что жидкость понижается снаружи от одной из них в такой же степени, как поднимается снаружи от другой, они взаимно отталкиваются. Поверхность жидкости между ними будет иметь горизонтальную линию перегиба на уровне поверхности наружной жидкости. Внутри жидкость будет меньше поднята около плоскости, которая её поднимает, чем снаружи. Однако мы видели, что тогда давление больше с той стороны, где жидкость поднята меньше. Подобно этому, поскольку жидкость больше понижена снаружи от плоскости, которая её понижает, чем с внутренней стороны этой плоскости, внутреннее давление больше; поэтому обе плоскости стараются отдалиться одна от другой, и это стремление имеет место, каково бы ни было их сближение. Иначе обстоит дело, если есть разница между поднятием жидкости снаружи от одной из плоскостей и её опусканием снаружи — от другой. Анализ показывает, что они начинают с отталкивания, но если продолжать их сближать, это отталкивание сменяется притяжением, которое возрастает по мере их взаимного сближения, причём жидкость внутри них безгранично поднимается или опускается. Во всех случаях, отталкиваются ли плоскости или притягиваются, поскольку они действуют одна на другую только через капиллярность, действие всегда равно противодействию. Опыт подтвердил эти выводы теории.
Наконец, взвешенное состояние тел на поверхности жидкости с меньшим удельным весом, чем у этих тел, также является капиллярным явлением, которое можно подвергнуть анализу. Оно может иметь место только тогда, когда эти тела своим капиллярным действием оттесняют жидкость. Тогда, как можно себе представить, для равновесия они должны возмещать
Этот принцип включает известный в гидростатике принцип уменьшения веса тел, погруженных в жидкость. Чтобы это понять, достаточно исключить то, что относится к капиллярному действию, которое полностью исчезает, если тело вполне погружено в жидкость под её уровнем. Для доказательства этого вообразим вертикальный канал, достаточно широкий, чтобы охватить тело и весь ощутимый объём жидкости, который оно своим капиллярным действием поднимает или оставляет пустым. Предположим, что этот канал, войдя в жидкость, становится горизонтальным и затем вновь поднимается вертикально до поверхности жидкости, всё время сохраняя свою ширину. Ясно, что веса, заключённые в двух вертикальных ветвях этого канала, в состоянии равновесия должны быть одинаковы. Следовательно, необходимо, чтобы тело, благодаря своей относительной лёгкости, компенсировало вес поднятой капиллярным действием жидкости или, если это действие его вдавливает, надо, чтобы своей относительной тяжестью оно компенсировало произведённую этим пустоту. В первом случае действие капиллярности стремится погрузить тело в жидкость, во втором случае это действие приподнимает тело, которое благодаря этому, обладая даже большим удельным весом, может держаться на поверхности жидкости.
Именно таким образом цилиндр из очень тонкой стали, контакт которого с водой предотвращён лаковым покрытием или обволакивающим его слоем воздуха, держится на поверхности этой жидкости. Если два одинаковых и параллельных цилиндра поместить горизонтально на воде с таким расчётом, чтобы они соприкасались, но один выступал из-за другого, они немедленно начинают скользить один вдоль другого, чтобы стать своими концами на одном уровне. Так как жидкость больше сжата у того конца цилиндра, который соприкасается с другим цилиндром, чем у противоположного конца, основания этих последних испытывают большее давление, чем два других. Вследствие этого каждый цилиндр всё больше и больше стремится соединиться с другим; так как ускоряющие силы всегда выносят систему тел, выведенную из равновесия, за пределы этого состояния, два цилиндра должны попеременно обгонять один другого, делая колебания, постепенно уменьшающиеся из-за испытываемого ими сопротивления и наконец прекращающиеся. Тогда, придя в состояние покоя, эти цилиндры своими концами оказываются на одном уровне.
Явления, представляемые жидкой каплей, находящейся в движении или висящей в равновесии, будь то в конической капиллярной трубке или между двумя немного наклонёнными одна к другой плоскостями, у которых пересечение горизонтально, очень пригодны для проверки теории. Маленький столбик воды или спирта в конической стеклянной трубке, открытой с обоих концов и удерживаемой горизонтально, перемещается к вершине трубки; и мы видим, что это так и должно быть. В самом деле, поверхность жидкого столба вогнута на обоих этих концах. Но радиус этой поверхности меньше со стороны вершины, чем со стороны основания. Поэтому действие жидкости самой на себя меньше со стороны вершины, и, следовательно, столб жидкости должен стремиться в эту сторону. Если жидкость — ртуть, поверхность выпукла, и её радиус также меньше у вершины, чем у основания, но вследствие выпуклости действие жидкости на саму себя больше у вершины, и столб жидкости должен перемещаться к основанию трубки, что согласуется с экспериментами.
Можно уравновешивать эти действия жидкости самой на себя собственным весом столба жидкости и поддерживать её в равновесии, наклоняя ось трубки к горизонту. Очень простой подсчёт позволяет видеть, что если длина столба жидкости незначительна и если трубка очень узкая, синус угла наклонения оси к горизонту в случае равновесия почти в точности обратно пропорционален квадрату расстояния от середины столба жидкости до вершины конуса и равен дроби, у которой знаменатель равен этому расстоянию, а числитель — высоте, на которую жидкость поднялась бы в цилиндрической трубке, у которой диаметр был бы равен диаметру конуса в середине столба. Подобные же выводы имеют место для жидкой капли, помещённой между двумя плоскостями, соприкасающимися своими краями, которые предполагаются горизонтальными, причём плоскости образуют между собой угол, равный углу между осью конуса и его сторонами. Чтобы капля находилась в равновесии, наклон к горизонту плоскости, разделяющей на равные части угол, образованный плоскостями, должен быть таким же, как у оси конуса. Опыты, относящиеся к этому вопросу, подтверждают выводы теории.
Форма жидкостей, заключённых между плоскостями, составляющими между собой произвольный угол, фигура жидких капель, опирающихся на плоскость, истечение жидкостей из капиллярных сифонов и множество других подобных явлений, как и предыдущие, были подвергнуты анализу. Согласие его результатов с опытами неоспоримо доказывает существование во всех телах уменьшающегося с исключительной быстротой молекулярного притяжения, которое, модифицируясь в жидкостях формой содержащих их узких пространств, производит все явления капиллярности.
Поскольку эти явления были приведены к одной математической теории, для точного сравнения её с природой было необходимо иметь серию очень точных опытов. Необходимость в таких опытах даёт себя чувствовать по мере того, как физика, совершенствуясь, входит в область анализа. Тогда сравнением опытов с теориями эти теории можно поднять на самую высокую ступень достоверности, возможную для физических паук. Опыты с явлениями капиллярности, которые по моей просьбе проделал г-н Гей-Люссак, придав им всю точность астрономических наблюдений, обеспечили это преимущество теории, которую мы изложили.