Чтение онлайн

на главную - закладки

Жанры

Квантовая механика и интегралы по траекториям
Шрифт:

На практике в некоторых случаях для нас может представлять интерес не точное линейное смещение частицы от предполагаемой начальной точки, а угол , под которым частица вылетает из пластины. Обладая полной функцией распределения (12.76), легко вычислить функцию распределения углов, проинтегрировав по всем значениям D. Результат равен exp[-(^2/2RT)]. Этого можно было ожидать, поскольку мы уже предположили, что среднеквадратичный угол отклонения при прохождении единичной толщины равен R, так что эта же величина для полной толщины T должна быть RT.

Предположим теперь, что мы наблюдаем только частицы, вылетающие под фиксированным углом , и рассмотрим для этих частиц

функцию распределения по положениям точек вылета D. Найдём, что распределение вероятностей имеет максимум при D=T/2. Этого можно было бы ожидать, если бы конечный угол отклонения нарастал пропорционально толщине пластины; тогда среднее значение угла во время пролёта через пластину было бы равным /2.

Задача 12.2. Покажите, что нормировочный коэффициент для функции распределения P(D,) dD d равен

6

RT^3

1/2

1

2RT

1/2

.

(12.77)

§ 7. Квантовая механика

В этом и следующих параграфах нам хотелось бы посмотреть, как формулируются статистические задачи в квантовой механике. Вероятности неотделимы от квантовой механики, так как даже объект, находящийся в известном состоянии, одновременно с некоторой вероятностью находится в других состояниях. Кроме того, неопределённость может вноситься извне. Например, исходное состояние объекта само может быть задано с какой-то вероятностью. Такая ситуация аналогична ситуации в классической механике, в которой неизвестны начальные условия, а задано лишь распределение вероятностей для таких условий. В классической механике мы уже сталкивались с подобной проблемой, но это был сугубо частный случай, когда состояние с энергией E имеет соответствующую вероятность e– E/kT. Здесь мы рассмотрим более общую картину.

Пусть квантовомеханическая система находится под влиянием заданного внешнего потенциала V(t). Что можно сказать, если потенциал описывается распределением вероятностей P[V(t)]DV? Нужно ли нам в действительности решать задачу для каждого потенциала V(t) и затем усреднять, или же имеется способ сформулировать задачу уже после усреднения по V(t)? Хотелось бы надеяться, что это именно так, потому что часто оказывается намного легче решить статистическую задачу после предварительного усреднения, чем искать общее решение первоначальной задачи с очень большим числом условий. В этом параграфе покажем, что такая формулировка действительно возможна. После этого рассмотрим случай, когда квантовомеха-ническая система возмущается не классической, а некоторой другой статистически неопределённой квантовой системой.

Основная цель этой главы — показать, как можно сформулировать эти и другие подобные вопросы. Мы не будем заниматься детальным решением упомянутых частных задач; они нужны нам лишь для того, чтобы помочь понять способы постановки более общих проблем.

Прежде всего обсудим аналогию броуновского движения для квантовомеханической системы, т.е. предположим, что квантовая система, которой соответствует невозмущённое действие S(q), испытывает влияние внешнего потенциала V(t) и при этом действие S становится равным *)

S

v

(q)

=

S(q)

+

q(t)

V(t)

dt

.

(12.78)

*) Все операции

мы проделаем так, как если бы аргументом была только одна координата q. Читатель может непосредственно получить обобщение на случай нескольких координат qi (при этом V заменяется набором потенциалов Vi) и на случай, когда коэффициент при V(t) в действии SV не равен просто q, а является более сложным оператором.

Допустим, что нас интересует вопрос: какова вероятность того, что, отправившись в начальный момент времени ti из точки q(ti)=qi, мы достигнем в конечный момент tf положения qf? Эта вероятность определяется квадратом амплитуды |K(qf,tf;qi,ti)|^2. Если начальное состояние системы задаётся волновой функцией (q), а конечное — волновой функцией (q), то вероятность перехода между этими состояниями

P[(q);(q)]

=

*(q

f

)

K(q

f

,t

f

;q

i

,t

i

)

(q

i

)

dq

f

dq

i

^2

=

=

*(q

f

)

(q'

f

)

K(q

f

,t

f

;q

i

,t

i

)

K*(q'

f

,t

f

;q'

i

,t

i

)

x

x

(q

i

)

*(q'

i

)

dq

i

dq'

i

dq

f

dq'

f

.

(12.79)

Очевидно, что все подобные задачи могут быть решены, если вычислить произведение

K(q

f

,t

f

;q

i

,t

i

)

K*(q'

f

,t

f

;q'

i

,t

i

)

(12.80)

Здесь первый множитель содержит интеграл по траекториям exp{iS[q(t)]}Dq(t), тогда как второй, комплексно-сопряженный *), включает exp{-iS[q(t)]}Dq(t). Каждый из интегралов взят по траекториям с заданными конечными точками. Во втором интеграле выражения (12.80) обозначим переменную интегрирования по траектории через q'(t). При этом произведение (12.80) можно выразить как двойной интеграл по траекториям:

Поделиться:
Популярные книги

Вдова на выданье

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Вдова на выданье

Бракованная невеста. Академия драконов

Милославская Анастасия
Фантастика:
фэнтези
сказочная фантастика
5.00
рейтинг книги
Бракованная невеста. Академия драконов

Идеальный мир для Лекаря 29

Сапфир Олег
29. Лекарь
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Идеальный мир для Лекаря 29

30 сребреников

Распопов Дмитрий Викторович
1. 30 сребреников
Фантастика:
попаданцы
альтернативная история
фэнтези
фантастика: прочее
5.00
рейтинг книги
30 сребреников

Идеальный мир для Социопата 3

Сапфир Олег
3. Социопат
Фантастика:
боевая фантастика
6.17
рейтинг книги
Идеальный мир для Социопата 3

Секреты серой Мыши

Страйк Кира
Любовные романы:
любовно-фантастические романы
6.60
рейтинг книги
Секреты серой Мыши

Пограничная река. (Тетралогия)

Каменистый Артем
Пограничная река
Фантастика:
фэнтези
боевая фантастика
9.13
рейтинг книги
Пограничная река. (Тетралогия)

Тайны затерянных звезд. Том 2

Лекс Эл
2. Тайны затерянных звезд
Фантастика:
боевая фантастика
космическая фантастика
космоопера
фэнтези
5.00
рейтинг книги
Тайны затерянных звезд. Том 2

Жестокая свадьба

Тоцка Тала
Любовные романы:
современные любовные романы
4.87
рейтинг книги
Жестокая свадьба

Темный Лекарь 3

Токсик Саша
3. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 3

Лютая

Шёпот Светлана Богдановна
Любовные романы:
любовно-фантастические романы
6.40
рейтинг книги
Лютая

Призван, чтобы защитить?

Кириллов Сергей
2. Призван, чтобы умереть?
Фантастика:
фэнтези
рпг
7.00
рейтинг книги
Призван, чтобы защитить?

Пятничная я. Умереть, чтобы жить

Это Хорошо
Фантастика:
детективная фантастика
6.25
рейтинг книги
Пятничная я. Умереть, чтобы жить

Злыднев Мир. Дилогия

Чекрыгин Егор
Злыднев мир
Фантастика:
фэнтези
7.67
рейтинг книги
Злыднев Мир. Дилогия