Патофизиология. Том 2
Шрифт:
насосной функции сердца при хронической сердечной недостаточности сравнительно
невелика, поскольку нарушения гемодинамики развиваются постепенно на протяжении
нескольких лет. Более или менее определенно можно говорить о рефлексе Бейнбриджа,
который «включается» уже на стадии достаточно выраженной гиперволемии.
Особое место среди «разгрузочных» экстракардиальных рефлексов занимает рефлекс
Китаева,
случаев проявления правожелудочковой недостаточности связаны с застойными
явлениями в большом круге кровообращения, а левожелудочковой - в малом. Исключение
составляет стеноз митрального клапана, при котором застойные явления в легочных
сосудах вызваны не декомпенсацией левого желудочка, а препятствием току крови через
левое атриовентрикулярное отверстие - так называемым «первым (анатомическим) барьером».
При этом застой крови в легких способствует развитию правожелудочковой недостаточности, в
генезе которой рефлекс Китаева играет важную роль.
Рефлекс Китаева - это рефлекторный спазм легочных артериол в ответ на
повышение давления в левом предсердии. В результате возникает «второй
(функциональный) барьер», который первоначально играет защитную роль, предохраняя
легочные капилляры от чрезмерного переполнения кровью. Однако затем этот рефлекс
приводит к выраженному повышению давления в легочной артерии - развивается острая
легочная гипертензия. Афферентное звено этого рефлекса представлено n. vagus, a эфферентное - симпатическим звеном вегетативной нервной системы. Негативной
стороной данной приспособительной реакции является подъем давления в легочной
артерии, приводящий к увеличению нагрузки на правое сердце.
Однако ведущую роль в генезе долговременной компенсации и декомпенсации
нарушенной сердечной функции играют не рефлекторные, а нейрогуморальные
механизмы, важнейшим из которых является активация симпатоадреналовой системы и
РААС. Говоря об активации симпатоадреналовой системы у пациентов с хронической
сердечной недостаточностью, нельзя не указать, что у большинства из них уровень
катехоламинов в крови и моче находится в пределах нормы. Этим хроническая сердечная
недостаточность отличается от острой сердечной недостаточности.
Механизмы декомпенсации сердечной недостаточности
Параллельно с интра- и экстракардиальными компенсаторными изменениями,
развиваются при сердечной недостаточности, появляются и постепенно прогрессируют
повреждения сердечной мышцы, приводящие к снижению ее сократительной способности. На
определенной стадии процесса такие явления могут быть обратимыми. При продолжении или
усилении действия причинного фактора, вызвавшего сердечную недостаточность, а также при
срыве механизмов компенсации развиваются необратимые диффузные изменения миокарда с
характерной клинической картиной декомпенсированной сердечной недостаточности.
Патогенез сердечной недостаточности представляется следующим образом.
Многочисленный ряд примеров патологии сер-
дечной деятельности (кардиомиопатии, нарушения коронарной перфузии и др.)
индуцирует кислородное голодание миокарда. Известно, что в условиях нормального
кровоснабжения важным энергетическим субстратом для сердечной мышцы являются
свободные жирные кислоты, глюкоза и молочная кислота. Гипоксия приводит к
нарушению процессов аэробного окисления субстратов в цикле Кребса, к угнетению
окисления НАДН в дыхательной цепи митохондрий. Все это способствует накоплению
недоокисленных продуктов метаболизма свободных жирных кислот и глюкозы (ацил-
КоА, лактат). Усиленное образование ацил-КоА в кардиомиоцитах негативно сказывается
на энергетическом метаболизме клетки. Дело в том, что ацил-КоА является ингибитором
аденилаттранслоказы - фермента, который осуществляет транспорт АТФ из митохондрий
в саркоплазму. Аккумуляция ацил-КоА приводит к нарушению этого транспорта,
усугубляя энергетический дефицит в клетке.
Единственным источником энергии для кардиомиоцитов становится анаэробный гликолиз, интенсивность которого в условиях гипоксии резко возрастает. Однако «коэффициент полезного
действия» анаэробного гликолиза по сравнению с эффективностью энергопродукции в цикле
Кребса намного ниже. В силу этого анаэробный гликолиз не в состоянии полностью возместить
энергетические потребности клетки. Так, при анаэробном расщеплении одной молекулы глюкозы
образуются всего две молекулы АТФ, в то время как при окислении глюкозы до углекислого газа и
воды - 32 молекулы АТФ. Нехватка высокоэнергетических фосфатов (АТФ и креатинфосфата) приводит к нарушению энергозависимого процесса удаления ионов кальция из саркоплазмы
кардиомиоцитов и возникновению кальциевой перегрузки миокарда.
В норме увеличение концентрации Ca2+ в кардиомиоцитах вызывает образование