Разыскания истины
Шрифт:
Из этих трех родов истин, истины, существующие между идеями, вечны и неизменны, и по причине своей неизменности они служат также правилами и мерилами для всех остальных; ибо всякое правило или мерило должно быть неизменным. В арифметике, алгебре и геометрии рассматриваются лишь этого рода истины, ибо эти общие науки управляют всеми частными науками и содержат их в себе. Все отношения, или истины, существующие между сотворенными вещами или между идеями и сотворенными вещами, подвержены изменению, которое свойственно всякому творению. Одни лишь истины, существующие между нашими идеями и внешним существом, неизменны, подобно истинам между одними идеями, потому что Богу не свойственно изменение, как и идеям, которые он содержит.
Истины, существующие между идеями, мы можем открыть усилиями одного лишь
488
Отношение, существующее между отношениями величин, т. е. между пропорциями, называется сложною пропорцией, потому что это сложное отношение; отношение, представляющее собою отношение 6 к 4 и 3 к 2, есть сложная пропорция. Когда входящие пропорции равны, эта сложная пропорция называется пропорциональностью, или двойною пропорцией. Отношение, существующее между отношением 8 к 4 и отношением 6 к 3, будет пропорциональностью, потому что эти оба отношения равны.
Должно заметить, что все отношения или все пропорции, как простые, так и сложные, суть действительные величины, а самый термин «величина» — термин относительный, необходимо указывающий на некоторое отношение, ибо нет ничего большого самого по себе вне отношения к другому, кроме бесконечного или единицы. Даже целые числа будут такими же несомненными отношениями, как числа дробные, т. е. числа, сравниваемые с другим числом или разделенные на другое число, хотя это может и не прийти в голову, так как целые числа могут быть выражены одной цифрой. Например, 4 или 8/2 будет таким же несомненным отношением, как 1/4 или 2/8. Единица, к которой 4 имеет отношение, не выражена, но она подразумевается; ибо 4 есть отношение, как и 4/1 или 8/2, потому что 4 равно 4/1 или 8/2. Если же всякая величина есть отношение или всякое отношение — величина, то очевидно, все отношения могут быть выражены цифрами и их можно представить воображению посредством линий.
Итак, все истины не что иное, как отношения, а следовательно, чтобы знать с точностью все истины, как простые, так и сложные, достаточно знать с точностью все отношения, как простые, так и сложные. Как было выше сказано, существуют двоякие отношения:
отношения равенства и отношения неравенства. Очевидно, что все отношения равенства подобны; если нам известно, что одна вещь равна другой нам известной вещи, мы знаем с точностью и отношение ее. Не то с неравенством: известно, например, что башня больше сажени и меньше тысячи саженей, но мы не знаем наверное ее величины и отношения ее к сажени.
Чтобы сравнивать вещи между собою или, вернее, чтобы измерять с точностью отношения неравенства, нужна точная мера, нужна простая и вполне понятная идея, универсальная мера, которая приложима ко всяким предметам. Эта мера — единица; ею измеряются точно все вещи и без нее невозможно ничего знать с некоторою точностью. Но все числа состоят из единиц, и очевидно, что без идей чисел и без сравнения и измерения этих идей, т. е. без арифметики, невозможно подвинуться в познании сложных
истин.
Так как идеи или отношения между идеями, словом, величины, бывают больше или меньше в сравнении с другими величинами, то их можно уравнять, прибавляя к ним или отнимая
489
ницы (если мы мыслим ее разделенной) измеряются с точностью все величины и открываются все истины. Изо всех же наук лишь арифметика и алгебра учат нас по преимуществу производить эти действия, производить их искусно, с ясностью и удивительным сбережением способности ума. Так что эти две науки одни дают разуму все то совершенство, всю ту обширность, какие ему доступны; посредством их одних мы открываем все истины, которые могут быть познаны с полною точностью.
Обыкновенная геометрия совершенствует не столько разум, сколько воображения, и истины, открываемые посредством этой науки, не всегда бывают так очевидны, как это воображают геометры. Например, они думают, что выразили точно известные величины, если доказали, что они равны известным линиям, линии же эти будут хордами прямых углов, стороны которых с точностью известны, или линии, определенные каким-нибудь коническим сечением. Очевидно, они ошибаются, ибо эти хорды сами по себе вовсе неизвестны. Мы знаем с большею точностью v8 или v20, чем линию, которую мы воображаем или обозначаем на бумаге как хорду прямого угла, стороны которого равны 2 или одна сторона равна 2, а другая — 4. Известно, по крайней мере, что V8 весьма близок к 3, а \20 составляет приблизительно 4 с 1/2; и можно, следуя известным правилам, постоянно приближаться к их действительной величине до бесконечности; достичь этого невозможно лишь потому, что разум не может постичь бесконечного. Но наша идея о величине хорды весьма смутная, и приходится даже прибегнуть к v8 или v20, чтобы выразить ее. Итак, геометрические построения, к которым мы прибегаем, чтобы выразить точные величины количеств неизвестных, пригодны не столько для того, чтобы направлять разум и находить искомые отношения, или истины, сколько для того, чтобы направлять воображение. Но нам нравится больше пользоваться своим воображением, чем своим разумом, и потому математики обыкновенно уважают больше геометрию, чем алгебру и арифметику.
Нескольких размышлений о правилах арифметики и алгебры достаточно, чтобы вполне понять, что эти две науки вместе составляют настоящую логику, служащую для нахождения истины и чтобы дать разуму всю ту обширность, которая доступна ему.
Мы только что сказали, что все истины суть лишь отношения, что самое простое и самое известное изо всех отношений это — отношение равенства; оно служит началом для измерения других, чтобы получилась идея неравенства; мерило, которым мы должны пользоваться, есть единица, и ее следует прибавлять или отнимать столько раз, сколько необходимо, чтобы измерить разность в неравенстве этих величин.
Ясно, что все действия, служащие к нахождению отношений равенства, будут лишь сложениями и вычитаниями, сложениями величин, чтобы уравнять их; сложениями отношений, чтобы уравнять
490
отношения или привести величины к пропорциональности; наконец, сложениями отношений, чтобы уравнять отношения отношений или привести величины к сложной пропорциональности.
Чтобы уравнять 4 с 2, надо лишь прибавить 2 к 2 или отнять 2 от 4, или, наконец, прибавить единицу к 2 и отнять ее от 4. Это
ясно.
Для уравнения отношения или пропорции 8 к 2 с отношением
6 к 3 не следует прибавлять 3 к 2 или отнимать 3 от 8, чтобы разность этих обоих чисел равнялась 3, которое составляет разность 6 и 3: это значило бы прибавлять и уравнивать простые величины, разность 8 и 5 с разностью 6 и 3. Надо найти прежде величину отношения 8 к 2, что составит 8/2; разделив 8 на 2, мы найдем, что показатель этого отношения будет 4 или что 8/2 равно 4. Затем надо посмотреть, какова величина отношения 6 к 3, и мы найдем, что она равна 2. Итак, мы узнаем, что эти два отношения: 8/2, равное 4, и 6/3, равное 2, разнятся на 2. Чтобы уравнять их, можно или прибавить к 6/3 еще 6/3, равное 2, ибо у нас получится 12/3, что составит отношение, равное 8/2, или отнять 4/2, равное 2, от 8/2, ибо мы получим 4/2, представляющее собою отношение, равное 6/3; или же, наконец, мы можем прибавить единицу к 6/3 или отнять ее от 8/2, ибо мы получим 9/3 и 6/2, что составит равные отношения,